PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of tropospheric amplitude scintillation on Ku Band earth-space link over a tropical station

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work utilized three years of measured satellite radio beacons to examine the statistical and temporal characteristics of tropospheric scintillation intensity and amplitude on the earth-space link over Akure, Southwest Nigeria (7.17 °N, 5.18 °E, 358 m). The signal measurement from Eutelsat W4/W7 satellite was taken between January 2016 and December 2018. The instrument used is Tektronix Y400 NetTek spectrum analyzer at a sampling rate of 1-s, downlink frequency 12.254 GHz, and path elevation of 036°E. Analysis involving cumulative distribution and probability density functions was performed over seven sampling intervals for characterizing the distribution of scintillation phenomenon on an annual and sub-annual basis. The results show scintillation intensity (σχ) to be well approximated by lognormal, Gamma, and generalized extreme value (GEV) distributions, while scintillation amplitude (χ) was suitably described by Gaussian distribution model. Also, as the sampling interval increased, the accuracy of the distribution models decreased. Analysis of mean and standard deviation equally revealed that scintillation intensities measured over longer intervals are less variable. Finally, a two-part exponential model developed for scintillation intensity prediction performed well as indicated by a least R2 value of 0.97 just as highest sum of square error (SSE) and root-mean-square error (RMSE) values of 0.192 and 0.087, respectively, were returned for both the goodness of ft and goodness of validation tests.
Czasopismo
Rocznik
Strony
415--427
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
Bibliografia
  • 1. Adebo B, Akindugbagbe J (2019) Prediction of tropospheric scintillation over some selected locations in Nigeria. J Am Sci 15(3):72–77
  • 2. Adediji AT, Ajewole MO, Ojo JS, Ashidi AG, Ismail M, Mandeep JS (2015) Influence of some meteorological factors on tropospheric radio refractivity over a tropical location in Nigeria. MAUSAM 66:123–128
  • 3. Adhikari A, Maitra A (2011) Studies on the inter-relation of Ku-band scintillations and rain attenuation over an Earth–space path on the basis of their static and dynamic spectral analysis. J Atmos Solar Terr Phys 73(4):516–527
  • 4. Ashidi AG, Ojo JS, Adediji AT, Ajewole MO (2017) Characterization of Ku-band amplitude scintillation on earth-space path over akure, SW Nigeria XXXIInd General Assembly and Scientific Symposium, URSI (Montreal, Canada)
  • 5. Ashidi AG (2020) Ku-Band scintillation over Akure Nigeria. IOP SciNotes 1(3):034403
  • 6. Ashidi AG, Ogunjo ST, Akinmoladun TM (2019) Distribution analysis and autoregressive modelling of ultraviolet radiation over Akure, Nigeria. Int J Environ Health 9(4):289–305
  • 7. Ashidi AG, Dada JB, Lawal YB (2020) Spectral analysis of Ku-Band scintillation dataset for satellite communication in a tropical location. In: 2020 international conference in mathematics, computer engineering and computer science (ICMCECS). IEEE, pp 1–5
  • 8. Ashidi A, Ojo J, Adediji A, Ajewole O (2021) Development and performance evaluation of tropospheric scintillation model on Ku-band satellite link over Akure Nigeria. Adv Space Res 67(5):1612–1622
  • 9. Banjo O, Vilar E (1986) Measurement and modeling of amplitude scintillations on low-elevation Earth-space paths and impact on communication systems. IEEE Trans Commun 34(8):774–780
  • 10. Chen CY, Singh MJ (2014) Comparison of tropospheric scintillation prediction models of the Indonesian climate. Earth, Planets Space 66(1):64
  • 11. Enserink, S. and Fitz, M.P., 2008, January. Mitigation of scintillation using antenna receive diversity for Ka band satellite signals. In 2008 IEEE Radio and Wireless Symposium (pp. 89–92). IEEE
  • 12. Fante RL (1980) Electromagnetic beam propagation in turbulent media: an update. Proc IEEE 68(11):1424–1443
  • 13. Fuwape IA, Ogunjo ST, Dada JB, Ashidi GA, Emmanuel I (2016) Phase synchronization between tropospheric radio refractivity and rainfall amount in a tropical region. J Atmos Solar Terr Phys 149:46–51
  • 14. Haddon J, Vilar E (1986) Scattering induced microwave scintillations from clear air and rain on Earth space paths and the influence of antenna aperture. IEEE Trans Antennas Propag 34(5):646–657
  • 15. Ippolito LJ (1989) Propagation effects handbook for satellite systems design: a summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design, vol 1082. National Aeronautics and Space Administration, Scientific and Technical Information Division
  • 16. Ishimaru A (1978) Wave propagation and scattering in random media. Academic press, New York
  • 17. ITU-R P.618–12 (2015), Propagation data and prediction methods required for the design of Earth-space telecommunications systems, Recommendation, P Series ITU-R, Int. Telecomm. Union, Geneva
  • 18. Karasawa Y, Matsudo T (1991) Characteristics of fading on low-elevation angle Earth-space paths with concurrent rain attenuation and scintillation. IEEE Trans Antennas Propag 39(5):657–661
  • 19. Karasawa Y, Yamada M, Allnutt JE (1988) A new prediction method for tropospheric scintillation on Earth-space paths. IEEE Trans Antennas Propag 36(11):1608–1614
  • 20. Kayode A, Ayodeji A, Samuel O, Moses A (2019) Variation of surface refractivity with soil permittivity and leaf wetness in a tropical location. Int J Wireless Microwave Tech 9(4):26–38. https://doi.org/10.5815/ijwmt.2019.04.03
  • 21. Livingston DC (1970) The physics of microwave propagation. Prentice Hall
  • 22. Maitra A, Chakravarty K, Bhattacharya S, Bagchi S (2007) Propagation studies at Ku-band over an earth-space path at Kolkata. Indian J Radio Space Phys 36:363–368
  • 23. Mandeep JS (2011) Experimental analysis of tropospheric scintillation in Northern Equatorial West Malaysia. Int J Phys Sci 6(7):1673–1676
  • 24. Mayer CE, Jaeger BE, Crane RK, Wang X (1997) Ka-band scintillations: measurements and model predictions. Proc IEEE 85(6):936–945
  • 25. Moulsley TJ, Vilar E (1982) Experimental and theoretical statistics of microwave amplitude scintillations on satellite down-links. IEEE Trans Antennas Propag 30(6):1099–1106
  • 26. Ojo JS, Rabiu B, Radicella SM, Obiyemi OO (2018) Experimental analysis and comparison of tropospheric scintillation prediction models using eutelsat-36b satellite in a tropical Nigeria. Int J Basic Appl Sci 7(1):8–14
  • 27. Otung IE (1995) Amplitude scintillation of Ka-band satellite signals. Doctoral Dissertation University of Surrey
  • 28. Otung IE (1996) Prediction of tropospheric amplitude scintillation on a satellite link. IEEE Trans Antennas Propag 44(12):1600–1608
  • 29. Otung IE, Mahmoud MS (1996) Rain-induced scintillation on satellite downlinks. Electron Lett 32(1):65–67
  • 30. Peeters G, Marzano FS, d’Auria G, Riva C, Vanhoenacker-Janvier D (1997) Evaluation of statistical models for clear-air scintillation prediction using olympus satellite measurements. Int J Satell Commun 15(2):73–88
  • 31. Singh MSJ, Hassan SIS (2003) Probability density function of tropospheric amplitude scintillation on a satellite link. In 4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings. (pp. 102–105). IEEE
  • 32. Strohbehn JW, Wang TI, Speck JP (1975) On the probability distribution of line-of-sight fluctuations of optical signals. Radio Sci 10(1):59–70
  • 33. Van de Kamp MMJL (1998) Asymmetric signal level distribution due to tropospheric scintillation. Electron Lett 34(11):1145–1146
  • 34. Van de Kamp MM, Tervonen JK, Salonen ET, Baptista JP (1999) Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Trans Antennas Propag 47(2):249–260
  • 35. Vilar E, Haddon J (1984) Measurement and modeling of scintillation intensity to estimate turbulence parameters in an Earth-space path. IEEE Trans Antennas Propag 32(4):340–346
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f35d4928-7b4c-4e95-9c28-1eee8997f55b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.