PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on the deflection and crack layout in a hollow slab bridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper conducts research based on the hollow slab members in the reconstruction and expansion project of expressways, two types of numerical finite element models with and without considering bond-slip relationship of reinforcement and concrete are established, and verified by tests. The distribution characteristics of crack spacing in reinforced concrete beams are studied. The results show that the bond-slip characteristics of reinforced concrete have little effect on the load-deflection characteristics of 8m hollow slab beam. Due to the influence of the bond-slip relationship of reinforced concrete, the load-deflection curve is partially serrated, while without considering the bond-slip relationship of reinforced concrete, the load-deflection curve is smooth. In the numerical model without considering the bond-slip characteristics, almost all damage occurs in the longitudinal direction, and the distribution characteristics of cracks can’t be accurately determined. Regardless of whether the bond-slip is considered or not, the macroscopic characteristics of the stress distribution is: smaller near the support and larger at the mid-span. As secondary flexural cracks expand, models with and without consideration of bond-slip characteristics can’t calculate crack spacing based on the stress distribution characteristics of the reinforcement.
Rocznik
Strony
541--555
Opis fizyczny
Bibliogr. 19 poz., il., tab.
Twórcy
autor
  • Shandong High-speed Group Co., Ltd., Jinan, China
autor
  • Geotechnical and Structural Engineering Research Center of Shandong University, Jinan, China
Bibliografia
  • [1] JTG 3362-2018 Specification for design of highway reinforced concrete and prestressed concrete bridges and culverts. Beijing, China, 2018.
  • [2] GB50010-2010 Code for design of concrete structures. Beijing, China, 2015.
  • [3] A. Lindorf, R. Lemnitzer, and M. Curbach, “Experimental investigations on bond behaviour of reinforced concrete under transverse tension and repeated loading”, Journal of Engineering Structures, vol. 31, no. 7, pp. 1469-1476, 2009, doi: 10.1016/j.engstruct.2009.02.025.
  • [4] R. Piyasena, Y.C. Loo, and S. Fragomeni, “Factors influencing spacing and width of cracks in reinforced concrete; new prediction formulae”, Journal of Advanced Structural Engineering, vol. 7, no. 1, pp. 49-60, 2004, doi: 10.1260/136943304322985756.
  • [5] G. Creazza and S. Russo, “A new model for predicting crack width with different percentages of reinforcement and concrete strength classes”, Journal of Materials and Structures, vol. 32, pp. 520-524, 1999, doi: 10.1007/BF02481636.
  • [6] B.H. Oh and S.H. Kim, “Advanced crack width analysis of reinforced concrete beams under repeated loads”, Journal of Structural Engineering, vol. 133, no. 3, pp. 411-420, 2007, doi: 10.1061/(ASCE)0733-9445(2007)133:3(411).
  • [7] H.G. Kwak and J.Y. Song, “Cracking analysis of RC members using polynomial strain distribution function”, Journal of Engineering Structures, vol. 24, no. 4, pp. 455-468, 2002, doi: 10.1016/S0141-0296(01)00112-2.
  • [8] EN 1992-1-1 Design of concrete structures-general rules and rules for building. European Committee for Standardization, 2004.
  • [9] J.J. Jiang, Concrete structure engineering. Beijing, China: China Construction Industry Press, 1998.
  • [10] A. Casanova, L. Jason, and L. Davenne, “Bond slip model for the simulation of reinforced concrete structures”, Journal of Engineering Structures, vol. 39, pp. 66-78, 2012, doi: 10.1016/j.engstruct.2012.02.007.
  • [11] E. Giner, et al., “An Abaqus implementation of the extended finite element method”, Journal of Engineering Fracture Mechanics, vol. 76, no. 3, pp. 347-368, 2009, doi: 10.1016/j.engfracmech.2008.10.015.
  • [12] Abaqus, Abaqus Analysis User’s Manual, version 2021.
  • [13] X. Song, Y. Wu, X. Gu, and C. Chen, “Bond behaviour of reinforcing steel bars in early age concrete”, Journal of Construction and Building Materials, vol. 94, pp. 209-217, 2015, doi: 10.1016/j.conbuildmat.2015.06.060.
  • [14] J. Santos and A. A. Henriques, “New finite element to model bond-slip with steel strain effect for the analysis of reinforced concrete structures”, Journal of Engineering Structures, vol. 86, pp. 72-83, 2015, doi: 10.1016/j.engstruct.2014.12.036.
  • [15] C. Mang, L. Jason, and L. Davenne, “Crack opening estimate in reinforced concrete walls using a steel-concrete bond model”, Archives of Civil and Mechanical Engineering, vol. 16, no. 3, pp. 422-436, 2016, doi: 10.1016/j.acme.2016.02.001.
  • [16] P. Grassl, M. Johansson, and J. Leppanen, “On the numerical modelling of bond for the failure analysis of reinforced concrete”, Journal of Engineering Fracture Mechanics, vol. 189, pp. 13-26, 2018, doi: 10.1016/j.engfracmech.2017.10.008.
  • [17] S. Kang, S. Wang, X. Long, D. Wang, and C. Wang, “Investigation of dynamic bond-slip behaviour of reinforcing bars in concrete”, Journal of Construction and Building Materials, vol. 262, art. no. 120824, 2020, doi: 10.1016/j.conbuildmat.2020.120824.
  • [18] CEB-FIP, CEB-FIP Model Code 90. London: Thomas Telford Ltd., 1993.
  • [19] F. Zhang, X. F. Xu, and S. C. Li, “Bond-slip model for HB-FRP systems bonded to concrete”, China Journal of Highway and Transport, vol. 28, pp. 38-44, 53, 2015, doi: 10.19721/j.cnki.1001-7372.2015.01.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f35902df-c428-479c-97b0-6c8f6e04e23d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.