Identyfikatory
Warianty tytułu
Proces obliczania szybkiej transformaty SLTF z wykorzystaniem operacji wektorowo-macierzowych
Języki publikacji
Abstrakty
The paper presents computation process of the fast SLTF transform that use matrix-vector algebra. Examples explaining the course of the calculations both analysis and synthesis transform, are also illustrated by the graph-structural models that helps to understand the algorithm principle. Additionally, an improved calculation procedure reducing redundant data redirection was proposed.
W pracy przedstawiono proces obliczania szybkiej transformaty SLTF z wykorzystaniem operacji wektorowo-macierzowych. Przykłady objaśniające przebieg obliczeń zarówno transformaty prostej jak i odwrotnej zilustrowano grafami ułatwiającymi zrozumienie zasady działania algorytmu. Dodatkowo zaproponowano ulepszoną procedurę obliczeniową redukującą nadmiarowe przeadresowania danych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
40--43
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Computer Science and Information Technology, Żołnierska 49, 71-210 Szczecin
Bibliografia
- [1] Ahmed O.A., Fast Computation of Discrete SLTF Transform, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, (2001), 317-320
- [2] Ahmed O.A , Fahr y M.M., NMR Signal Enhancement Via a New Time-Frequency Transform, IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 20 (2001), no. 10, 1018-1025
- [3] Ahmed O.A., New denoising scheme for magnetic resonance spectroscopy signals, IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 25 (2005), no. 6, 804-813
- [4] Ahmed O.A., New denoising scheme for magnetic resonance spectroscopy signals, Proceedings - 23rd Annual Conference IEEE/EMBS Oct.25-28 2001 Istanbul TURKEY, vol.4 (2001), 2157-2160
- [5] Blahut R.E., Fast Algorithms for Signal Processing, Cambridge University Press, (2010), 68-112
- [6] Andreatto B., Tariov A., A fast algorithm for multiresolution discrete Fourier transform, Electrical Review (2012), no. 11a/2012, 66-69
- [7] Baba T., Time-Frequency Analysis Using Short Time Fourier Transform , The Open Acoustics Journal, 5 (2012), 32-38
- [8] Nawab S.H., Quatieri T.F., Lim J.S., Signal reconstruction from short-time Fourier transform magnitude, Acoustics, Speech and Signal Processing, IEEE Transactions, vol 31(1983), no. 4, 986-998
- [9] Balart R., Matrix reformulation of the Gabor transform, Optical Engineering, vol 31(1992), no 6, 1235-1242
- [10] Orr R.S., The Order of Computation for Finite Discrete Gabor Transforms, Signal Processing, IEEE Transactions, vol. 41(1993), no. 1, 122-130
- [11] Stewart D.F., Potter L.C., Ahalt S.C., Computationally attractive real Gabor transforms, Signal Processing, IEEE Transactions, vol. 43(1995), no. 1, 122-130
- [12] Stockwell R.G., Mansinha L., Lowe R.P., Localization of complex spectrum: the S transform, IEEE Transactions on Signal Processing, 144 (1996), 998-1001
- [13] Chu P.C., The S-transform for obtaining localized spectra, Marine Technological Society Journal, 29 (1996), 28- 38
- [14] Pinnegar P.C., Mansinha L., The S-transform with windows of arbitrary and varying shape, Geophysics, vol. 69 (2003), no. 1, 381-385
- [15] Tariov A., Gliszczyński M., Vectorized S Transform algorithms for multiprocessor platform, PAK (2011), no. 11, 1401-1403
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f355149e-f01b-4be3-8329-5debdd1c803d