PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An assessment of the susceptibility of bacterial cellulose films to fouling by mold fungi

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An assessment of susceptibility of bacterial cellulose films to fouling by mold fungi. The article presents the results of research on the degree of fouling of films made of bacterial cellulose by selected mold fungi. The degree of fouling of the cellulose film was compared with the degree of fouling of pine wood samples. On the basis of the obtained results, it was found that the cellulose film is covered by mold fungi. At the same time, it was found that T. viride grows on wood much faster than bacterial cellulose.
PL
W artykule przedstawiono wyniki badań stopnia porastania folii wytworzonych z celulozy bakteryjnej przez wybrane grzyby pleśniowe. Stopień porastania folii celulozowej porównano ze stopniem porastania próbek drewna sosny. Na podstawie uzyskanych wyników stwierdzono, że folia celulozowa ulega porastaniu przez grzyby pleśniowe. Jednocześnie ustalono, że grzyb T. viride znacznie szybciej porasta drewno niż celulozę bakteryjną.
Słowa kluczowe
Twórcy
  • Warsaw University of Wood Science – SGGW, Institute of Wood Sciences and Furniture
  • Warsaw University of Wood Science – SGGW, Institute of Wood Sciences and Furniture
  • Warsaw University of Wood Science – SGGW, Institute of Wood Sciences and Furniture
Bibliografia
  • 1. AMORIM, J.D.P., COSTA, A.F.S., GALDINO, C.J.S.J., VINHAS, G.M., SANTOS, E. & SARUBBO, L.A., 2019: Bacterial Cellulose Production Using Industrial Fruit Residues as Subtract to Industrial Application. Chemical Engineering Transactions, nr 74; 1165–1170.
  • 2. BROWN, A.J., 1886: XIX – The chemical action of pure cultivations of bacterium aceti. Journal of Chemical Society Transactions nr 49(0); 172–187.
  • 3. BETLEJ, I., SALERNO-KOCHAN, R., KRAJEWSKI, K.J., ZAWADZKI, J., BORUSZEWSKI, P., 2020: The influence of culture medium components on the physical and mechanical properties of cellulose synthesized by kombucha microorganisms. BioResources nr 15(2); 3125–3135.
  • 4. BETLEJ, I., 2019: Studies on the diversity of substrate composition in the culture medium of Kombucha microorganisms and its influence on the quality of synthesized cellulose. Annals of WULS SGGW Forestry and Wood Technology nr 108; 21–25.
  • 5. BORYSIUK, P., WILKOWSKI, J., KRAJEWSKI, K., AURIGA, R., SKOMORUCHA, A. & AURIGA, A., 2020: Selected properties of flat-pressed wood-polymer composites for high humidity conditions. BioResources nr 15(3); 5141–5155.
  • 6. CAVICCHIOLI, M., CORSO, C.T., COELHO, F., MENDES, L., SASKA, S., SOARES, C.P., SOUZA, F.O., FRANCHI, L.P., CAPOTE, T.S.O., SCAREL-CAMINAGA, R.M., MESSADDEQ, Y. & RIBEIRO, S.J.L., 2015: Characterization and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose membranes incorporated with ciprofloxacin: a potential material for use as therapeutic contact lens. World Journal of Pharmacy and Pharmaceutical Sciences nr 4(7); 1626–1647.
  • 7. DOMSKIENE, J., SEDERAVICIUTE, F., & SIMONAITYTE, J. 2019: Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology nr 31(5); 644–652.
  • 8. ILLA, M. P., SHARMA, C.S., & KHANDELWAL M. 2019. Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. Journal of Materials Science nr 54(18); 12024–12035.
  • 9. JUNCU, G., STOICA-GUZUN, A., STROESCU, M., ISOPENCU, G. & JINGA, S.I., 2016: Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. International Journal of Pharmaceutics nr 510(2); 485–492.
  • 10. JUNG, J.Y., KHAN, T., PARK, J.K. & CHANG, H.N., 2007: Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering nr 24(2); 265–271.
  • 11. KIZILTAS, E.E., KIZILTAS, A. & GARDNER, D. J., 2015: Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers nr 124(9); 131–138.
  • 12. LEE, K.Y., BULDUM, G., MANTALARIS, A. & BISMARCK, A., 2014: More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fibre composites. Macromolecular Bioscience nr 14(1); 10–32.
  • 13. LIM, G.H., LEE, J., KWON, N. BOK, S., SIM, H., MOON, K.S., LEE, S.E & LIM, B., 2016: Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electronic Materials Letters 12(5); 574–579.
  • 14. LIU, X., SOUZANDEH, H., ZHENG, H., XIE, Z., ZHONG, W.-H. & WANG, C., 2017: Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology nr 138(1); 124–133.
  • 15. SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M., PIETZSCH, T. & CARDONA, A., 2012: Fiji: An open-source platform for biological-image analysis. Nature Methods 9; 676–682.
  • 16. SUSHIL, H., 2018: Growth of bacteria and the bacterial growth curve. Online Science Notes. August 14.
  • 17. SKOCAJ, M., 2019: Bacterial nanocellulose in papermaking. Cellulose nr 26(11); 6477–6488.
  • 18. SKVORTSOVA, Z.N., GROMOVYKH, T.I., GRAHEV, V.S. & TRASKIN, V.Y., 2019: Physicochemical mechanics of bacterial cellulose. Colloid Journl nr 81(4); 366–376.
  • 19. STANISŁAWSKA, A., STAROSZCZYK, H. & SZKODO, M., 2020: The efect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydrate Polymers nr 236(10); 116023.
  • 20. SUSHIL, H., 2018: Growth of bacteria and the bacterial growth curve. Online Science Notes. August 14.
  • 21. TINEVEZ, J.Y., PERRY, N., SCHINDELIN, J., HOOPES, G.M., REYNOLDS, G.D., LAPLANTINE, E. ELICEIRI, K.W., 2017: TrackMate: An open and extensible platform for single-particle tracking. Methods nr 115; 80–90.
  • 22. URBINA, L., GUARESTI, O., REQUIES, J., GABILONDO, N. ECEIZA, A., CORCUERA, M. A. & RETEGI, A., 2018: Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydrate Polymers nr 193(15); 362–372.
  • 23. WACIKOWSKI, B. & MICHAŁOWSKI M., 2020: The possibility of using bacterial cellulose in particleboard technology. Annals of WULS SGGW Forestry and Wood Technology nr 109: 16–23.
  • 24. WANG, J., TAVAKOLI, J. & TANG, Y., 2019: Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers 219(17); 63–76.
  • 25. YAMADA, Y., YUKPHAN, P., LAN VU, H.T., MARAMATSU, Y., TANASUPAWAT, S. & NAKAGAWA, Y., 2012: Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). Journal of General and Applied Microbiology nr 58(5); 397–404.
  • 26. YIM, S.M., SONG, J.E. & KIM, H.R., 2017: Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry nr 59(8); 26–36.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f350c2a8-ce59-4bcb-a35b-ae1cddb3acde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.