PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on “position-energy” response correction method based on monolithic crystal coupled SiPM array

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intrinsic characteristics of the monolithic crystal detector are spatially inconsistent, which leads to the position dependence of the detector on the energy response of the γ-ray as well as the peak shift of the response spectrum of the detector, that is, the “position-energy” shift. The “position-energy” shift will cause the energy resolution of the detector to deteriorate and affect the energy linearity of the detector. Thus, a crucial challenge in enhancing the position consistency of detector energy response, improving energy resolution, and ensuring accurate isotope identifi cation is the reduction or elimination of this “position-energy” offset. The “position-energy” response correction method is proposed in this paper to improve the position consistency of detector energy response. Firstly, Monte Carlo simulation is used to model monolithic LaBr3(Ce) crystal detectors of different sizes. Secondly, the effective detection region of the detector model is evenly divided into 25 blocks, then the spectral peak position of each incident region is extracted, and the spectral peak correction function matrix of 25 incident regions and the center position is established. Finally, 25 incident regional peaks are modifi ed according to the modifi ed function matrix, so that the spectral peaks in each region are consistent with the peaks in the center, and the modifi ed spectral responses of the detector are obtained. The simulation results show that this method can effectively solve the “position-energy” migration problem of monolithic crystal detectors of different sizes and improve the peak consistency of each detector region. The energy resolution of the 662 keV characteristic peak of the Cs-137 point source can be improved from 4.5% to 3.9%, and the linear deviation of energy can be reduced from 2.1% to 1.2%.
Czasopismo
Rocznik
Strony
169--176
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Chengdu University of Technology Chengdu, Sichuan 610059, China
autor
  • Chengdu University of Technology Chengdu, Sichuan 610059, China
autor
  • Chengdu University of Technology Chengdu, Sichuan 610059, China
autor
  • Chengdu University of Technology Chengdu, Sichuan 610059, China
autor
  • Chengdu University of Technology Chengdu, Sichuan 610059, China
autor
  • Chengdu University of Technology Chengdu, Sichuan 610059, China
autor
  • Chengdu University of Technology Chengdu, Sichuan 610059, China
Bibliografia
  • 1. Kim, J. H., Back, H. K., & Joo, K. S. (2020). Development of a wireless radiation detection backpack using array silicon-photomultiplier(SiPM). Nucl. Eng. Technol., 52(2), 456–460. DOI: 10.101 6/j.net.2019.07.027.
  • 2. Renker, D. (2006). Geiger-mode avalanche photodiodes, history, properties and problems. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 567(1), 48–56. DOI: 10.1016 /j.nima.2006.05.060.
  • 3. Ghosh, S., Mallick, S., Banerjee, K., Grein, C., Velicu, S., Zhao, J., Silversmith, D., Rodmiguez, J. B., Plis, E., & Skishna, S. (2008). Low-noise mid-wavelength infrared avalanche photodiodes. J. Electron. Mater., 37(12), 1764–1769.
  • 4. Otte, N., Dolgoshein, B., Hose, J., Klemin, S., Lorenz, E., Mirzoyan, R., Popova, E., & Teshima, M. (2006). The SiPM–A new photon detector for PET. Nucl. Phys. B-Proc. Suppl., 150, 417–420. DOI: 10.1016/j.nucl physbps.2004.08.048.
  • 5. Agishev, R., Comerón, A., Bach, J., Rodriguez, A., Sicard, M., Riu, J., & Royo, S. (2013). Lidar with SiPM: Some capabilities and limitations in real environment. Opt. Laser Technol., 49, 86–90. DOI: 10.1016/j.op tlastec.2012.12.024.
  • 6. Grodzicka, M., Moszyński, M., Szczęśniak, T., Kapusta, M., Szawłowski, M., & Wolski, D. (2013). Energy resolution of small scintillation detectors with SiPM light readout. J. Instrum., 8(02), P2017. DOI: 10.1088/17 48-0221/8/02/P02017.
  • 7. Lin, Z., Hautefeuille, B., Jung, S. -H., Moon, J., & Park, J. -G. (2020). The design of a scintillation system based on SiPMs integrated with gain correction functionality. Nucl. Eng. Technol., 52(1), 164–169. DOI: 10.101 6/j.net.2019.07.005.
  • 8. Miyamoto, H., Minoura, I., Okamoto, K., Takizawa, Y., & Teshima, M. (2012). SiPM interdisciplinary application in the fields of astroparticle physics and bio-molecular science. Nucl. Instrum. Methods Phys. Res. A-Accel. Spectrom. Dect. Assoc. Equ., 695, 87–90. DOI: 10.1016 /j.nima.2011.11.078.
  • 9. Park, H. M., & Joo, K. S. (2016). Remote radiation sensing module based on a silicon photomultiplier for industrial applications. Appl. Radiat. Isot., 115, 13–17. DOI: 10.1016/j.a pradiso.2016.06.002.
  • 10. Huang, T., Fu, Q., Lin, S., & Wang, B. (2017). NaI (Tl) scintillator read out with SiPM array for gamma spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 851, 118–124. DOI: 10.1016 /j.nima.2017.01.068.
  • 11. Kim, C., Kim, H., Kim, J., Lee, C., Yoo, H., Kang, D. U., Cho, M., Kim, M. S., Lee, D., Kim, Y., Lim, K. T., Yang, S., & Cho, G. (2015). Replacement of a photomultiplier tube in a 2-inch thallium-doped sodium iodide gamma spectrometer with silicon photomultipliers and a light guide. Nucl. Eng. Technol., 47(4), 479–487. DOI: 10.101 6/j.net.2015.02.001.
  • 12. Li, Y., Wang, C., Liu, L., Shi, B., Cao, Q., Zhang, Y., Xia, S., & Dong, J. (2022). Development and performance calibration of position sensitive detector based on LaBr3(Ce) crystal coupled with SiPM. Nuclear Techniques, 45(7), 070401. DOI: 10.11889/j.0253-3219.2022.hjs.45.070401. (in Chinese).
  • 13. Licciulli, F., Indiveri, I., & Marzocca, C. (2013). A novel technique for the stabilization of SiPM gain against temperature variations. IEEE Trans. Nucl. Sci., 60(2), 606–611. DOI: 10.11 09/TNS.2013.2249527.
  • 14. Li, Z., Liu, C., Xu, Y., Yan, B., Li, Y., Lu, X., Li, X., Zhang, S., Chang, Z., Li, J., Gao, H., Zhang, Y., & Zhao, J. (2016). A novel analog programmable power supply for active gain control of the Multi-Pixel Photon Counter (MPPC). Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 850, 35–41. DOI: 10.1016 /j.nima.2017.01.029.
  • 15. Huh, Y., Choi, Y., Jung, J. H., & Jung, J. (2015). A method to stabilize the temperature dependentperformance of G-APD arrays. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 772, 83–88. DOI: 10.1016 /j.nima.2014.11.006.
  • 16. Lightfoot, P. K., Barker, G. J., Mavrokoridis, K., Ramachers, Y. A., & Spooner, N. J. C. (2008). Characterisation of a silicon photomultiplier device for applications in liquid argon based neutrino physics and dark matter searches. J. Instrum., 3, P10001. DOI: 10.1088/17 48-0221/3/10/P10001.
  • 17. Bonesini, M., Benocci, R., Bertoni, R., Menegolli, A., Prata, M., Rossella, M., & Rossini, R. (2023). Large area LaBr3:Ce crystals read by SiPM arrays with improved timing and temperature gain drift control. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 1046, 167677. DOI: 10.485 50/arXiv.2211.05081.
  • 18. Kaplan, A. (2009). Correction of SiPM temperature dependencies. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 610(1), 114–117. DOI: 10.1016 /j.nima.2009.05.137.
  • 19. Shim, H. S., Park, H., & Lee, J. S. (2021). A temperature-dependent gain compensation technique for positron emission tomography detectors based on a silicon photomultiplier. Phys. Med. Biol., 66(20), 205015(12p). DOI: 10.10 88/1361-6560/ac2b81.
  • 20. Licciulli, F., & Marzocca, C. (2015). An active compensation system for the temperature dependence of SiPM gain. IEEE Trans. Nucl. Sci., 62(1), 228–235. DOI: 10.11 09/TNS.2015.2388580. 21. Lu, W., Wang, L., Yuan, Y., Zhang, T., Tang, G., Liu, M. - Z., Tuo, X. - G., & Ning, J. (2022). Monte Carlo simulation for performance evaluation of detector model with a monolithic LaBr_3(Ce) crystal and SiPM array for  radiation imaging. Nucl. Sci. Tech., 33(08), 165–176. DOI: 10.1007/S41365-022-01081-3.
  • 22. Zhang, M. (2020). Optimization design of scintillator detector based on SiPM. Master thesis, Lanzhou University. DOI: 10.27204/d.cnki.glzhu.2020.000327. (in Chinese).
  • 23. Tian, D. (2005). The techniques of detecting and analyzing the characteristic γ ray from nuclear material. National Def ense Industry Press. 24. Zhao, C. (2016). The study of gamma ray imaging detection technology. Chinese Academy of Sciences, Shanghai Institute of Applied Physics.
  • 24. Zhao, C. (2016). The study of gamma ray imaging detection technology. Chinese Academy of Sciences, Shanghai Institute of Applied Physics.
  • 25. Zhang, T., Wang, L., Ning, J., Lu, W., Wang, X. - F., Zhang, H. -W., & Tuo, X. -G. (2021). Simulation of an imaging system for internal contamination of lungs using MPA-MURA coded-aperture collimator. Nucl. Sci. Tech., 32(2), 60–71. DOI: 10.1007/S41365-021-00849-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f34f1dec-3c60-4369-920e-6cc3264ff9c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.