PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new topology of double-stator permanent magnet machine equipped with AC windings on both stators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new double stator permanent magnet machine having two sets of alternating current HacI windings in separate stators is proposed in this study. The proposed machine is appropriate for low-speed direct-drive applications. 2D- and 3D-finite element analysis (FEA) is adopted in the result predictions. The considered machine elements are: coil and phase flux linkage, coil and phase induced-electromotive force (EMF), copper loss, current density and torque characteristics. The analysis shows that the studied permanent magnet HpmI machine has better electromagnetic performance than its single-stator equivalent. Moreover, the proposed machine has potential for higher reliability if the separate stators are used independently. The effect of design parameters on open-circuit flux linkage and induced-electromotive force, as well as on the average electromagnetic torque of the proposed double stator machine is also presented. It is observed that for each of the investigated design variables, there is a need to select the optimal value in order to achieve the best average torque. The investigated design parameters are: the split ratio, magnet thickness, rotor radial thickness, inner stator tooth-width, rotor inner and outer iron-width/pitch ratio, and stator yoke size.
Rocznik
Strony
283--296
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Michael Okpara University of Agriculture Umudike, Nigeria
Bibliografia
  • [1] Liu C., Chau K.T., Zhang Z., Novel design of double-stator single-rotor magnetic-geared machines, IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4180–4183 (2012), DOI: 10.1109/TMAG. 2012.2201705.
  • [2] Salihu S.M., Misron N., Othman M.L., Hanamoto T., Power density evaluation of a novel double-stator magnetic geared permanent magnet generator, Progress In Electromagnetics Research B, vol. 80, no. 1, pp. 19–36 (2018), DOI: 10.2528/PIERB17102303.
  • [3] Wang Y., Cheng M., Chen M., Du Y., Chau K.T., Design of high-torque-density double-stator permanent magnet brushless motors, IET Electric Power Applications, vol. 5, no. 3, pp. 317–323 (2011), DOI: 10.1049/iet-epa.2010.0187.
  • [4] Reichert T., Nussbaumer T., Kolar J.W., Split ratio optimization for high-torque PM motors considering global and local thermal limitations, IEEE Transactions on Energy Conversion, vol. 28, no. 3, pp. 493–501 (2013), DOI: 10.1109/TEC.2013.2259169.
  • [5] Chen J.T., Zhu Z.Q., Iwasaki S., Deodhar R.P., Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines, IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1681–1691 (2011), DOI: 10.1109/TIA. 2011.2155011.
  • [6] Awah C.C., Zhu Z.Q., Influence of rotor pole number on electromagnetic performance of double-stator switched flux PM machines, IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, pp. 1–6 (2016), DOI: 10.1109/VPPC.2016.7791709.
  • [7] Lin F., Qu R., Li D., A novel fully superconducting geared machine, IEEE Transactions on Applied Superconductivity, vol. 26, no. 7, pp. 1–5 (2016), DOI: 10.1109/TASC.2016.2594872.
  • [8] Huang X., Zhang K., Wu L., Fang Y., Lu Q., Design of a dual-stator superconducting permanent magnet wind power generator with different rotor configuration, IEEE Transactions on Magnetics, vol. 53 no. 6, pp. 1–4 (2017), DOI: 10.1109/TMAG.2017.2665600.
  • [9] Zhu X., Cheng M., Li X., Wang Y., Topology analysis, design, and comparison of high temperature superconducting double stator machine with stationary seal, IEEE Transactions on Applied Superconductivity, vol. 30, no. 1, pp. 1–10 (2020), DOI: 10.1109/TASC.2019.2914041.
  • [10] Shao L., Hua W., Li F., Soulard J., Zhu Z.Q., Wu Z., Cheng M., A comparative study on nine- and twelve-phase flux-switching permanent-magnet wind power generators, IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3607–3616 (2019), DOI: 10.1109/TIA.2019.2910482.
  • [11] Shao L., Hua W., Soulard J., Zhu Z.Q., Wu Z., Cheng M., Electromagnetic performance comparison between 12-phase switched flux and surface-mounted PM machines for direct-drive wind power generation, IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1408–1422 (2020), DOI: 10.1109/ TIA.2020.2964527.
  • [12] Sun X., Zhu Z.Q., Wei F.R., Voltage pulsation induced in DC field winding of different hybrid excitation switched flux machines, IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 4815–4830 (2021), DOI: 10.1109/TIA.2021.3095432.
  • [13] Chen Y., Fu W., Weng X., A concept of general flux-modulated electric machines based on a unified theory and its application to developing a novel doubly-fed dual-stator motor, IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9914–9923 (2017), DOI: 10.1109/TIE.2017.2733454.
  • [14] Chen Y., Ding Y., Li X., Zhu X., Design and analysis of less-rare-earth double-stator modulated machine considering multioperation conditions, IEEE Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1–5 (2018), DOI: 10.1109/TASC.2017.2786689.
  • [15] Chen Y., Zhuang J., Ding Y., Li X., Optimal design and performance analysis of double stator multiexcitation flux-switching machine, IEEE Transactions on Applied Superconductivity, vol. 29, no. 2 pp. 1–5 (2019), DOI: 10.1109/TASC.2019.2891899.
  • [16] Ren X., Li D., Qu R., Kong W., Han X., Pei T., Analysis of spoke-type brushless dual-electrical-port dual-mechanical-port machine with decoupled windings, IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6128–6140 (2019), DOI: 10.1109/TIE.2018.2870395.
  • [17] Du G., Xu W., Zhu J., Huang N., Effects of design parameters on the multiphysics performance of high-speed permanent magnet machines, IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3472–3483 (2020), DOI: 10.1109/TIE.2019.2922933.
  • [18] Kurtović H., Hahn I., Calculation of active material’s torque contributions for a flux switching machine, IEEE Transactions on Magnetics, vol. 56, no. 2, pp. 1–4 (2020), DOI: 10.1109/TMAG.2019.2953377.
  • [19] Zhao H., Liu C., Song Z., Wang W., Lubin T., A dual-modulator magnetic-geared machine for tidalpower generation, IEEE Transactions on Magnetics, vol. 56, no. 8, pp. 1–7 (2020), DOI: 10.1109/ TMAG.2020.3003788.
  • [20] Wang W., Luo M., Cosoroaba E., Fahimi B., Kiani M., Rotor shape investigation and optimization of double Stator switched reluctance machine, IEEE Transactions on Magnetics, vol. 51, no. 3, pp. 1–4 (2015), DOI: 10.1109/TMAG.2014.2356573.
  • [21] Zhao W., Kwon J., Wang X., Lipo T.A., Kwon B., Optimal design of a spoke-type permanent magnet motor with phase-group concentrated-coil windings to minimize torque pulsations, IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1–4 (2017), DOI: 10.1109/TMAG.2017.2664075.
  • [22] Arbab N., Wang W., Lin C., Hearron J., Fahimi B., Thermal modeling and analysis of a double-stator switched reluctance motor, IEEE Transactions on Energy Conversion, vol. 30, no. 3, pp. 1209–1217 (2015), DOI: 10.1109/TEC.2015.2424400.
  • [23] Maharjant L. et al., Comprehensive report on design and development of a 100-kW DSSRM, IEEE Transactions on Transportation Electrification, vol. 4, no. 4, pp. 835–856 (2018), DOI: 10.1109/TTE. 2018.2865665
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3433b28-6d62-4b58-b98c-5e5ebbdedee4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.