PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilizing the energy of kinetic friction for the metallization of ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the metallization of ceramic materials using the friction-welding method in which the mechanism of the formation of a joint involves the kinetic energy of friction. The friction energy is directly transformed into heat and delivered in a specified amount precisely to the joint being formed between the metallic layer and the substrate material. The paper describes the ceramic metallization process, which has been developed by the present authors based on the friction-welding method. The stress and temperature fields induced in the joint during the metallization process were determined using the finite element method with the aim to optimize the process parameters. The results were verified experimentally. The structures of the metallic coatings thus obtained were examined and the results are discussed in the paper.
Rocznik
Strony
201--207
Opis fizyczny
Bibliogr. 30, wykr., rys., tab., fot.
Twórcy
  • Institute of Manufacturing Processes, Department of Welding Engineering, Warsaw University of Technology, 85 Narbutta St., 02-524 Warsaw, Poland
autor
  • Institute of Manufacturing Processes, Department of Welding Engineering, Warsaw University of Technology, 85 Narbutta St., 02-524 Warsaw, Poland
  • Polish Academy of Sciences, 1 Defilad Sq., 00-901 Warszawa, Poland
autor
  • Institute of Manufacturing Processes, Department of Welding Engineering, Warsaw University of Technology, 85 Narbutta St., 02-524 Warsaw, Poland
Bibliografia
  • [1] M. Barlak, W. Olesińska, J. Piekoszewski, M. Chmielewski, J. Jagielski, D. Kaliński, Z. Werner, and B. Sartowska, “Ion implantation as a pre-treatment method of AlN substrate for direct bonding with copper”, Vacuum 78, 205-209 (2005).
  • [2] K. Pietrzak, W. Olesinska, D. Kalinski, and A. Strojny- Nedza, “The relationship between microstructure and mechanical properties of directly bonded copper-alumina ceramics joints”, Bull. Pol. Ac.: Tech. 62 (1), 23-32 (2014).
  • [3] M. Barlak, W. Olesińska, J. Piekoszewski, Z. Werner, M. Chmielewski, J. Jagielski, D. Kaliński, B. Sartowska, and K. Borkowska, “Ion beam modification of ceramic component prior to formation of AlN-Cu joints by direct bonding process”, Surface & Coatings Technology 201 (19-20), 8317-8321 (2007).
  • [4] T. Chmielewski and D. Golański, “New method of in-situ fabrication of protective coatings based on Fe-Al intermetallic compounds”, Proc. Institution of Mechanical Engineers, J. Engineering B, 225 (4), 611-616 (2011).
  • [5] W. Wlosinski, T. Chmielewski, A. Gora, and A. Grabowska, “Warunki zgrzewania tarciowego i struktura złączy Al2O3-Al i Al2O3-Cu”, Welding Review 73 (1), 1-5 (2003), (in Polish).
  • [6] W. Wlosinski and T. Chmielewski, “Plasma-hardfaced chromium protective coatings-effect of ceramic reinforcement on their wettability by glass”, 3rd Int. Conf. on Surface Engineering- Chengdu, Contributions of Surface Engineering to Modern Manufacturing and Remanufacturing 1, 48-53 (2002).
  • [7] K. Wojciechowski, R. Zybala, and R. Mania, “High temperature CoSb3-Cu junctions”, Microelectronics Reliability 51, 1198-1202 (2011).
  • [8] M. Chmielewski and W. Weglewski, “Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials”, Bull. Pol. Ac.: Tech. 61 (2), 507-514 (2013).
  • [9] M. Chmielewski, J. Dutkiewicz, D. Kaliński, L. Litynska- Dobrzynska, K. Pietrzak, and A. Strojny-Nedza, “Microstructure and properties of hot-pressed molybdenum-alumina composites”, Archives of Metallurgy and Materials 57 (3), 687-693 (2012).
  • [10] T. Chmielewski, “Using kinetic energy from friction and detonation wave to ceramics metallization”, Scientific Papers of Warsaw University of Technology. Mechanic Series 242, 1-157 (2012), (in Polish).
  • [11] T. Chmielewski and D. Golański, “Numerical modelling of internal stresses in Al2O3-Ti and Al2O3-(Ti+Al2O3) joints formed during detonation spraying”, Welding Review 81 (9), 58-62 (2009), (in Polish).
  • [12] A. Krajewski, W. Włosiński, T. Chmielewski, and P. Kołodziejczak, “Ultrasonic-vibration assisted arc-welding of aluminum alloys”, Bull. Pol. Ac.: Tech. 60 (4), 841-852 (2013).
  • [13] L. Kyu-Yong, H. Won-Kyu, and J. In-Su, “Brazing joining of Al2O3-SUS304 with surface modification method”, Proc. 3rd Int. Brazing and Soldering Conf. 1, 24-26 (2006).
  • [14] R. Nagel, H. Hahn, and A.G. Balogh, “Diffusion processes in metal/ceramic interfaces under heavy ion irradiation”, Nuclear Instruments and Methods in Physics Research B 148, 930-935 (1999).
  • [15] E. Nicholas and W. Thomas, “Metal deposition by friction welding”, Welding J. 1, 17-27 (1986).
  • [16] W. Olesińska, D. Kaliński, M. Chmielewski, R. Diduszko, and W. Wlosiński, “Influence of titanium on the formation of a “barrier” layer during joining an AlN ceramic with copper by the CDB technique”, J. Materials Science - Materials in Electronics 17 (10), 781-788 (2006).
  • [17] J. Piekoszewski, A. Krajewski, F. Prokert, J. Senkara, J. Stanisławski, L. Waliś, Z. Werner, and W. Wlosiński, “Brazing of alumina ceramics modified by pulsed plasma beams combined witharc PVD treatment”, Vacuum 70, 307-312 (2003).
  • [18] K. Pietrzak, D. Kaliński, M. Chmielewski, T. Chmielewski, W. Wlosiński, and K. Choręgiewicz, “Processing of intermetallics with Al2O3 or steel joints obtained by friction welding technique”, Proc. 12th Conf. Eur. Ceramic Society - ECerS XII, CD-ROM (2011).
  • [19] K. Pietrzak, D. Kaliński, and M. Chmielewski, “Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina - heat resisting steel joints”, J. Eur. Ceramic Society 27 (2-3), 1281-1286 (2007).
  • [20] M. Samandi, M. Gudze, and P. Evans, “Application of ion implantation to ceramic/metal joining”, J. Nuclear Instruments and Methods in Physics Research B 127/128, 669-672 (1997).
  • [21] S. Zhu and W. Włosiński, “Joining of AlN ceramic to metals using sputtered Al or Ti film”, J. Materials Processing Technology 109, 277-282 (2001).
  • [22] K. Zdunek, “Concept, techniques, deposition mechanism of impulse plasma deposition - a short review”, Surface & Coatings Technology 201, 4813-4816 (2007).
  • [23] M. Barlak, M. Chmielewski, Z. Werner, P. Konarski, K. Pietrzaka, and A. Strojny-Nędza, “Changes of tribological properties of Inconel 600 after ion implantation process”, Bull. Pol. Ac.: Tech. 62 (4), 827-834 (2014).
  • [24] A. Ambroziak, M. Korzeniowski, P. Kustroń, and M. Winnicki, “Friction welding of niobium and tungsten pseudoalloy joints“, Int. J. Refractory Metals and Hard Materials 29, 499-504 (2011).
  • [25] A. Ambroziak, Friction Welding of Heteronamed Materials, Publishing House of Wroclaw University of Technology, Wrocław, 2011, (in Polish).
  • [26] J. Zimmerman, W. Włosinski, and Z. Lindemann, “Thermomechanical and diffusion modelling in the process of ceramicmetal friction welding”, J. Materials Processing Technology 209, 1644-1653 (2009).
  • [27] J. Zimmerman and W. Włosinski, “The analysis of thermomechanical and diffusion phenomena in the process of ceramicmetal friction welding”, Archives of Materials and Science 27 (1), 5-27 (2006).
  • [28] A. Ambroziak, “Friction welding of titanium-tungsten pseudoalloy joints”, J. Alloys and Compounds 506, 761-765 (2010).
  • [29] J. Zimmerman, “Temperature distribution in the friction welding of Al2O3 ceramic to aluminium”, Welding Int. 20 (6), 457-461 (2006).
  • [30] J. Zimmerman, Z. Lindemann, D. Golański, T. Chmielewski, and W. Włosiński, “Modeling residual stresses generated in Ti coating thermally sprayed on Al2O3 substrates”, Bull. Pol. Ac.: Tech. 61 (2), 515-525 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3420c5f-0a83-4871-a95d-d695edc19916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.