PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards (110). The effects of substrate temperature and the Sb/Ga flux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.
Słowa kluczowe
EN
MBE   GaSb   GaAs   IR detectors  
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Vigo System S.A., ul. Poznańska 129/133., 05-850 Ożarów Mazowiecki, Poland
  • Institute of Applied Physics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
  • Vigo System S.A., ul. Poznańska 129/133., 05-850 Ożarów Mazowiecki, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
  • Vigo System S.A., ul. Poznańska 129/133., 05-850 Ożarów Mazowiecki, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. B.R. Bennet, R.Magno, J.B. Boos, W. Kruppa, and M.G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review”, Solid-State Electron. 49, 1875-1895 (2005).
  • 2. L. Desplanque, D. Vignaud, and X. Wallart, “High mobility metamorphic AlSb/InAs heterostructures grown on InP substrates”, J. Cryst. Growth. 301-302, 194-198 (2007).
  • 3. Y. Li, Y. Zhang, and Y. Zeng, “Electron mobility in modulation-doped AlSb/InAs quantum wells”, J. Appl. Phys. 109, 073703 (2011).
  • 4. L. Shterengas, G.L. Belenky, A. Gourevitch, D. Donetsky, J.G. Kim, R.U. Martinelli, and D. Westerfeld, “High-power 2.3 μm GaSb-based linear laser array”, IEEE Photonics Technol. Lett. 16, 2218-2220 (2004).
  • 5. C. Mourad, D. Gianardi, K.J. Malloy, and R. Kaspi, “2 μm GaInAsSb/AlGaAsSb midinfrared laser grown digitally on GaSb by modulated-molecular beam epitaxy”, J. Appl. Phys. 88, 5543 (2000).
  • 6. H.K. Lin, D.W. Fana, Y.C. Lina, P.C. Chiua, C.Y. Chiena, P.W. Lia, J.I. Chyia, C.H. Kob, T.M. Kuanb, M.K. Hsiehb, W.C. Leeb, and C.H. Wann, “E-beam-evaporated Al2O3 for InAs/AlSb metal-oxide-semiconductor HEMT development”, Solid-State Electron. 54, 505-508 (2010).
  • 7. E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, W.W. Bewley, J.R. Meyer, J.C. Kim, L.J. Whitman, C.L. Canedy, and E.M. Jackson, “W-structure type-II superlattice long-wave infrared photodiodes with high quantum efficiency”, Appl. Phys. Lett. 89, 053519 (2006).
  • 8. O. Cathabard, R. Teissier, J. Devenson, J.C. Moreno, and A.N. Baranov, “Quantum cascade lasers emitting near 2.6 μm”, Appl. Phys. Lett. 96, 141110 (2010).
  • 9. Y.C. Xin, L.G. Vaughn, L.R. Dawson, A. Stintz, Y. Lin, L.F. Lester, and D.L, Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers”, Appl. Phys. Lett. 94, 2133 (2003).
  • 10. P. Jayavel, S. Nakamura, T. Koyama, and Y. Hayakawa, “Effects of buffer layer on the structural and electrical properties of InAsSb epilayers grown on GaAs (001)”, Phys. Stat. Sol. C3, 2685-2688 (2006).
  • 11. H.S. Kim, Y.K. Noh, M.D. Kim, Y.J. Kwon, J.E. Oh, Y.H. Kim, J.Y. Lee, S.G. Kim, and K.S. Chung, “Dependence of the AlSb buffers on GaSb/GaAs (001) heterostructures”, J. Cryst. Growth. 301-302, 230-234 (2007).
  • 12. K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Heteroepitaxial growth of GaSb on Si (001) substrates”, J. Cryst. Growth. 264, 21-25 (2004).
  • 13. R.T. Hao, S.K. Deng, L.X. Shen, P.Z. Yang, J.L. Tu, H. Liao, Y.Q. Xu, and Z.C. Niu, “Molecular beam epitaxy of GaSb on GaAs substrates with AlSb/GaSb compound buffer layers”, Thin Solid Films. 519, 228-230 (2010).
  • 14. A. Jallipalli, G. Balakrishnan, S.H. Huang, A. Khoshakhlagh, L.R. Dawson, and D.L. Huffaker, “Atomistic modeling of strain distribution in self−assembled interfacial misfit dislocation (IMF) arrays in highly mismatched III-V semiconductor materials”, J. Cryst. Growth. 303, 449-455 (2007).
  • 15. J. Tatebayashi, A. Jallipalli, M.N. Kutty, S.H. Huang, G. Balakrishnan, L.R. Dawson, and D.L. Huffaker, “Room-temperature lasing 1.82 μm of GaInSb/AlGaSb quantum wells grown on GaAs substrates using an interfacial misfit array”, Appl. Phys. Lett. 91, 141102 (2007).
  • 16. W. Qian, M. Skowronski, R. Kaspi, M. De Graef, and V.P. Dravid, “Nucleation of misfit and threading dislocations during epitaxial growth of GaSb on GaAs (001) substrates”, J. Appl. Phys. 81, 7268 (1997).
  • 17. A. Jallipalli, G. Balakrishnan, S.H. Huang, T.J. Rotter, K. Nunna, B.L. Liang, L.R. Dawson, and D.L. Huffaker, “Structural analysis of highly relaxed GaSb grown on GaAs substrates with periodic interfacial array of 90° misfit dislocations”, Nanoscale Res. Lett. 4, 1458-1462 (2009).
  • 18. Y. Li, Yang Zhang, Yuwei Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates”, Appl. Surface Science. 258, 6571-6575 (2012).
  • 19. C. Anayama, T. Tanahashi, H. Kuwatsuka, S. Nishiyama, S. Isozumi, and K. Nakajima, “High-purity GaSb epitaxial layers grown from Sb-rich solutions”, Appl. Phys. Lett. 56, 239 (1990).
  • 20. G.R. Johnson, B.C. Cavenett, T.M. Kerr, P.B. Kirby, and C.E.C. Wood, “Optical, Hall and cyclotron resonance measurements of GaSb grown by Molecular Beam Epitaxy”, Semicond. Sci. Technol. 3, 1157-1165 (1988).
  • 21. E.T.R. Chidley, S.K. Haywood, A.B. Henriques, N.J. Mason, R.J. Nicholas, and P.J. Walker, “Photoluminescence of GaSb grown by metal−organic vapour phase epitaxy”, Semicond. Sci. Technol. 6, 45-53 (1991).
  • 22. D. Effer and P.J. Etter, “An investigation into the apparent purity limit in GaSb”, J. Phys. Chem. Solids. 25, 451-460 (1964).
  • 23. M. Ichimura, K. Higuchi, Y. Hattori, T. Wada, and N. Kitamura, “Native defects in the AlxGa1-xSb alloy semiconductor”, J. Appl. Phys. 68, 6153 (1990).
  • 24. Q.H. Xie, J.E. Van Nostrand, R.L. Jones, J. Sizelove, and D.C. Look, “Electrical and optical properties of undoped GaSb grown by molecular beam epitaxy using cracked Sb1 and Sb2”, J. Cryst. Growth. 207, 255-265 (1999).
  • 25. M. Lee, D.J. Nicholas, K.E. Singer, and B. Hamiltom, “A photoluminescence and Hall-effect study of GaSb grown by molecular beam epitaxy”, J. Appl. Phys. 59, 2895 (1986).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3411638-a3bf-4643-b5d9-ef4c773687de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.