PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementing AI Collaborative Robots in Manufacturing – Modeling Enterprise Challenges in Industry 5.0 with Fuzzy Logic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this article is to propose a fuzzy logic system as a tool for automated risk identification of potential technical challenges and social barriers during the implementation of artificial intelligence-based co-bots on workstations in manufacturing enterprises. On the basis of an extensive literature review, as well as industry reports and expert consultations, the basic challenges and enterprise barriers occurring during the implementation of changes in enterprises, especially during the implementation of the latest technologies, were selected. A fuzzy logic model was then developed that, based on the values of the input factors, generates an answer as to whether there is a risk of technical or social challenges in an enterprise when implementing the latest technologies. The results generated by the developed model, when confronted with expert knowledge, experience and subjective assessments, showed that the model works as expected. The results of the study suggest that the use of fuzzy logic can effectively support companies in detecting challenges and obstacles, thereby facilitating decision-making in reducing the risk of their occurrence. Adaptation to the conditions currently prevailing in the company allows for dynamic adjustment of co-bot deployment strategies, which in turn can lead to more effective management of technological changes and minimization of potential operational disruptions.
Słowa kluczowe
EN
Twórcy
  • Department of Enterprise Organization, Faculty of Management, Lublin University of Technology, Nadbystrzycka 38d, 20-618 Lublin, Poland
  • Department of Enterprise Organization, Faculty of Management, Lublin University of Technology, Nadbystrzycka 38d, 20-618 Lublin, Poland
  • Faculty of Economics, Poland, Maria Curie-Skłodowska University, ul. Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland
Bibliografia
  • 1. Slavic D. The main concepts of Industry 5.0: A Bibliometric Analysis Approach. In: 2023 22nd International Symposium Infoteh-Jahorina (Infoteh) [Internet]. East Sarajevo, Bosnia and Herzegovina: IEEE; 2023 [cited 2024 May 27]. 1–5. Available from: https://ieeexplore.ieee.org/document/10094143/.
  • 2. Gamberini L, Pluchino P. Industry 5.0: A comprehensive insight into the future of work, social sustainability, sustainable development, and career. Australian Journal of Career Development. 2024 Apr; 33(1): 5–14.
  • 3. Gomathi L, Mishra AK, Tyagi AK. Industry 5.0 for Healthcare 5.0: Opportunities, Challenges and Future Research Possibilities. In: 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI) [Internet]. Tirunelveli, India: 2023 [cited 2024 May 27]. 204–13. Available from: https://ieeexplore.ieee.org/document/10125660/.
  • 4. Akundi A, Euresti D, Luna S, Ankobiah W, Lopes A, Edinbarough I. State of Industry 5.0—Analysis and Identification of Current Research Trends. ASI. 2022 Feb 17; 5(1): 27.
  • 5. Miller W. Collaborative robotics in metrology: The next generation technician? In: NCSL International Workshop & Symposium Conference Proceedings 2021 [Internet]. NCSL International; 2021 [cited 2024 May 27]. Available from: https://ncsli.org/store/viewproduct.aspx?ID=19178952.
  • 6. Malik AA, Pandey V. Drive the Cobots Aright: Guidelines for Industrial Application of Cobots. In: 5: 27th Design for Manufacturing and the Life Cycle Conference (DFMLC) [Internet]. St.
  • Louis, Missouri, USA: American Society of Mechanical Engineers; 2022 [cited 2024 May 27]. p.V005T05A015. Available from: https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2022/86250/V005T05A015/1150503.
  • 7. Borboni A, Reddy KVV, Elamvazuthi I, AL-Quraishi MS, Natarajan E, Azhar Ali SS. The Expanding Role of Artificial Intelligence in Collaborative Robots for Industrial Applications: A Systematic Review of Recent Works. Machines. 2023 Jan 13; 11(1): 111.
  • 8. Fast-Berglund Å, Romero D. Strategies for Implementing Collaborative Robot Applications for the Operator 4.0. In: Ameri F, Stecke KE, Von Cieminski G, Kiritsis D, editors. Advances in Production Management Systems Production Management for the Factory of the Future [Internet]. Cham: Springer International Publishing; 2019 [cited 2024 Jun 4]. 682–9. (IFIP Advances in Information and Communication Technology; 566). Available from: https://link.springer.com/10.1007/978-3-030-30000-5_83.
  • 9. Kakade S, Patle B, Umbarkar A. Applications of collaborative robots in agile manufacturing: a review. Robot syst, appl. 2023 Jun 30; 3(1): 59–83.
  • 10. Moutsana Tapolin F, Liaskos J, Zoulias E, Mantas J. A conversational web-based chatbot to disseminate COVID-19 advisory information. In: Mantas J, Gallos P, Zoulias E, Hasman A, Househ MS, Charalampidou M, et al., editors. Studies in Health Technology and Informatics [Internet]. IOS Press; 2023 [cited 2024 Jun 4]. Available from: https://ebooks.iospress.nl/doi/10.3233/SHTI230538.
  • 11. Rožanec JM, Novalija I, Zajec P, Kenda K, Tavakoli Ghinani H, Suh S, et al. Human-centric artificial intelligence architecture for industry 5.0 applications. International Journal of Production Research. 2023 Oct 18; 61(20): 6847–72.
  • 12. Sowa K, Przegalinska A, Ciechanowski L. Cobots in knowledge work. Journal of Business Research. 2021 Mar;125:135–42.
  • 13. Post JE, Altma BW. Managing the Environmental Change Process: Barriers and Opportunities. Journal of Organizational Change Management. 1994 Aug 1; 7(4): 64–81.
  • 14. Joyce P, Woods A, McNulty T, Corrigan P. Barriers to Change in Small Businesses: Some Cases from an Inner City Area. International Small Business Journal. 1990 Jul; 8(4): 49–58.
  • 15. Macadam C. Addressing the barriers of managing change. Management Development Review. 1996 Jun 1; 9(3): 38–40.
  • 16. Gupta C, Maria Fernandez-Crehuet J, Gupta V. A novel value-based multi-criteria decision making approach to evaluate new technology adoption in SMEs. PeerJ Computer Science. 2022 Dec 9;8:e1184.
  • 17. Ramírez-Gutiérrez AG, Solano García P, Morales Matamoros O, Moreno Escobar JJ, Tejeida-Padilla R. Systems Approach for the Adoption of New Technologies in Enterprises. Systems. 2023 Sep 27; 11(10): 494.
  • 18. Javaid M, Khan S, Haleem A, Rab S. Adoption of modern technologies for implementing industry 4.0: an integrated MCDM approach. BIJ. 2023 Dec 1; 30(10): 3753–90.
  • 19. Csiszár CM. Unleashing the digital barrier: Obstacles and challenges of digital transformation amidst technological roadblocks. MDT. 2023 Dec 20; 13(4): 120–32.
  • 20. Pizoń J, Witczak M, Gola A, Świć A. Challenges of human-centered manufacturing in the aspect of industry 5.0 assumptions. IFAC-PapersOnLine. 2023; 56(2): 156–61.
  • 21. Perdhana MS, Permanasari YW. Barriers to change: A case study investigation on factors hindering organizational transformation. JBS. 2019 Jul 1; 28(1): 1–8.
  • 22. Zafar DrF, Naveed K. Organizational change and dealing with employees’ resistance. International Journal of Management Excellence. 2014 Feb 3; 2(3): 237.
  • 23. Saal C, Lipp C, Lohse O, Krause S. 3D Model-based product definition and production – a mind change with technical hurdles. In: 2020 3rd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS) [Internet]. Gjovik, Norway: IEEE; 2020 [cited 2024 Jul 22]. 1–4. Available from: https://ieeexplore.ieee.org/document/9121460/.
  • 24. Kharkheli M, Gavardashvili D. The Need for Organizational Changes in Companies. EBTSU [Internet]. 2022 Apr 5 [cited 2024 May 27];15(1). Available from: https://eb.tsu.ge/?cat=nomer&leng=eng&adgi=1243&title=The%20Need%20for%20Organizational%20Changes%20in%20Companies.
  • 25. Aksoy A, Öztürk N. Design of an intelligent decision support system for global outsourcing decisions in the apparel industry. The Journal of The Textile Institute. 2016 Oct 2; 107(10): 1322–35.
  • 26. Bojanowska AB, Kulisz M. Using fuzzy logic to make decisions based on data from CRM systems. Adv Sci Technol Res J. 2023 Oct 20; 17(5): 269–79.
  • 27. Altinoz C, Winchester SC. A fuzzy approach to supplier selection. Journal of the Textile Institute. 2001 Jan; 92(2): 155–67.
  • 28. Dweiri FT, Kablan MM. Using fuzzy decision making for the evaluation of the project management internal efficiency. Decision Support Systems. 2006 Nov; 42(2): 712–26.
  • 29. Rzayeva U, Guliyeva A, Jafarova N. Analysis of some indicators by means of fuzzy logic on the example of Azerbaijani energy enterprises. Strielkowski W, editor. E3S Web Conf. 2021; 250: 02001.
  • 30. Korol T. The implementation of fuzzy logic in forecasting financial ratios. Contemporary Economics. 2018; 12(2): 165–87.
  • 31. Romanov A, Yarushkina N, Filippov A. Application of Time Series Analysis and Forecasting Methods for Enterprise Decision-Management. In: Rutkowski L, Scherer R, Korytkowski M, Pedrycz W, Tadeusiewicz R, Zurada JM, editors. Artificial Intelligence and Soft Computing [Internet]. Cham: Springer International Publishing; 2020 [cited 2024 Jul 24]. 326–37. (Lecture Notes in Computer Science; 12415). Available from: http://link.springer. com/10.1007/978-3-030-61401-0_31
  • 32. Scalzo C. Challenges of implementing new technology and how to address them [Internet]. 2019. Available from: https://www.onlinecomputers.com/2019/01/challenges-of-implementing-newtechnology-and-how-to-address-them/
  • 33. TechDemand. A deep investigation of technology adoption challenges in businesses [Internet].2023. Available from: https://www.techdemand.io/insights/tech/a-deep-investigation-of-technologyadoption-challenges-in-businesses/.
  • 34. Olmstead L. 11 Critical digital transformation challenges to overcome [Internet]. 2024. Available from: https://whatfix.com/blog/digital-transformation-challenges/35. Singla A, Sukharevsky A, Yee L, Chui M, Hall B. The state of AI in early 2024: Gen AI adoption spikes and starts to generate value [Internet]. 2024. Available from: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai#/.
  • 36. Juchniewicz M, Luba D, Mądel M. Implementing change in organisations: key challenges. JMFS. 2021 Dec 28; (44): 9–23.
  • 37. Stadnyk V, Zamazii O, Khrushch N, Yokhna V, Holovchuk O, Gadzhuk M. Justification of the organizational readiness of industrial enterprises for technological changes using fuzzy logic. In: 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek) [Internet]. Kharkiv, Ukraine: IEEE; 2023 [cited 2024 Aug 5]. 1–7. Available from: https://ieeexplore.ieee.org/document/10312940/
  • 38. Rubio-Manzano C, Díaz JC, Alfonso-Robaina D, Malleuve A, Medina J. A Novel Cause-Effect Variable Analysis in Enterprise Architecture by Fuzzy Logic Techniques: IJCIS. 2020; 13(1): 511.
  • 39. Muradov N. A fuzzy logic approach for evaluating the effectiveness of the use of information technology in an industrial enterprise. In: Aliev RA, Kacprzyk J, Pedrycz W, Jamshidi M, Babanli M, Sadikoglu FM, editors. 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021 [Internet]. Cham: Springer International Publishing; 2022 [cited 2024 Aug 5]. 697–703. (Lecture Notes in Networks and Systems; 362). Available from: https://link.springer.com/10.1007/978-3-030-92127-9_92.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f33df76e-80e3-4393-8467-05c391ee0812
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.