PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetization dependent demagnetization characteristic of rare-earth permanent magnets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate demagnetization modelling is mandatory for a reliable design of rare- earth permanent magnet applications, such as e.g. synchronous machines. The magnetization of rare-earth permanent magnets requires high magnetizing fields. For technical reasons, it is not always possible to completely and homogeneously achieve the required field strength during a pulse magnetization, due to stray fields or eddy currents. Not sufficiently magnetized magnets lose remanence as well as coercivity and the demagnetization characteristic becomes strongly nonlinear. It is state of the art to treat demagnetization curves as linear. This paper presents an approach to model the nonlinear demagnetization in dependence on the magnetization field strength. Measurements of magnetization dependent demagnetization characteristics of rare-earth permanent magnets are compared to an analytical model description. The physical meaning of the model parameters and the influence on them by incomplete magnetization are discussed for different rare-earth permanent magnet materials. Basically, the analytic function is able to map the occurring magnetization dependent demagnetization behavior. However, if the magnetization is incomplete, the model parameters have a strong nonlinear behavior and can only be partially attributed to physical effects. As a benefit the model can represent nonlinear demagnetization using a few parameters only. The original analytical model is from literature but has been adapted for the incomplete magnetization. The discussed effect is not sufficiently accurate modelled in literature. The sparse data in literature has been supplemented with additional pulsed-field magnetometer measurements.
Rocznik
Strony
33--45
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz.
Twórcy
  • Institute of Electrical Machines (IEM) RWTH Aachen University Schinkelstraße 4, 52056 Aachen, Germany
  • Institute of Electrical Machines (IEM) RWTH Aachen University Schinkelstraße 4, 52056 Aachen, Germany
  • Institute of Electrical Machines (IEM) RWTH Aachen University Schinkelstraße 4, 52056 Aachen, Germany
autor
  • Institute of Electrical Machines (IEM) RWTH Aachen University Schinkelstraße 4, 52056 Aachen, Germany
Bibliografia
  • [1] Furlani E.P., Permanent magnet and electromechanical devices: Materials, analysis, and applications, San Diego, California, Acad. Press (2001).
  • [2] Dinca C. et al., Characterization of a 7KJ magnetizing pulsed circuit for online quality control of permanent magnets, in 2015 IEEE Pulsed Power Conference (PPC), Austin, TX, USA, pp. 1–8 (2015).
  • [3] Dinca C., Motor design for maximum material exploitation and magnetization procedure with in-line quality check for mass production, Diss, Universitätsverlag der TU Berlin (2017).
  • [4] Zhang D., Kim H.-J., LiW., Koh C.-S., Analysis of Magnetizing Process of a New Anisotropic Bonded NdFeB Permanent Magnet Using FEM Combined With Jiles-Atherton Hysteresis Model, IEEE Trans. Magn., vol. 49, no. 5, pp. 2221–2224 (2013).
  • [5] Bergqvist A., Lin D., Zhou P., Temperature-Dependent Vector Hysteresis Model for Permanent Magnets, IEEE Trans. Magn., vol. 50, no. 2, pp. 345–348 (2014).
  • [6] KawaseY.,Yamaguchi T., MimuraN., Igata M., Ida K., Analysis of magnetizing process using discharge current of capacitor by 3-D finite-element method, IEEE Trans. Magn., vol. 38, no. 2, pp. 1145–1148 (2002).
  • [7] Przybylski M., Kapelski D., Ślusarek B.,Wiak S., Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors, Sensors, vol. 16, no. 4, p. 569 (2016).
  • [8] Bavendiek G., Hameyer K., Filippini M., Alotto P., Analysis of impulse-magnetization in rare-earth permanent magnets, JAE, vol. 57, no. 4, pp. 23–31 (2018).
  • [9] Bastos J.P.A., Magnetic materials and 3D finite element modeling, Boca Raton, FL: CRC Press (2014).
  • [10] Bozorth R.M., Ferromagnetism, Piscataway, New Jersey, Press John Wiley& Sons Inc., IEEE Xplore (1993).
  • [11] Durst K.-D., Kronmüller H., The coercive field of sintered and melt-spun NdFeB magnets, Journal of Magnetism and Magnetic Materials, vol. 68, no. 1, pp. 63–75 (1987).
  • [12] Richter H.J., Hempel K.A., Verhoef R., Magnetization reversal in microscopic NdFeB single crystals, Journal of Magnetism and Magnetic Materials, vol. 79, no. 1, pp. 113–118 (1989).
  • [13] Givord D., Rossignol M.F., Taylor D.W., Coercivity mechanisms in hard magnetic materials, J. Phys. IV France, vol. 02, no. C3, C3-95–C3-104 (1992).
  • [14] Plusa D., Mechanism of magnetization reversal in NdFeB permanent magnets, IEEE Trans. Magn., vol. 30, no. 2, pp. 872–874 (1994).
  • [15] Kronmüller H., Parkin S.S.P., Eds., Handbook of magnetism and advanced magnetic materials, Chichester, John Wiley& Sons Inc. (2007).
  • [16] Gabay A.M., Lileev A.S., Melnikov S.A., Menushenkov V.P., Magnetostatic interaction in nucleation type magnets, Journal of Magnetism and Magnetic Materials, vol. 97, no. 1–3, pp. 256–262 (1991).
  • [17] Campbell P., Permanent magnet materials and their application, 1st ed. Cambridge, Cambridge Univ. Press (1996).
  • [18] Vacuumschmelze, Vacodym-Vacomax, https://www.vacuumschmelze.com., accessed Jun 2018.
  • [19] Glehn G., Steentjes S., Hameyer K., Pulsed-Field Magnetometer Measurements and Pragmatic Hysteresis Modeling of Rare-Earth Permanent Magnets, IEEE Trans. Magn., vol. 54, no. 3, pp. 1–4 (2018).
  • [20] Zhou P., Lin D., Xiao Y., Lambert N., Rahman M.A., Temperature-Dependent Demagnetization Model of Permanent Magnets for Finite Element Analysis, IEEE Trans. Magn., vol. 48, no. 2, pp. 1031–1034 (2012).
  • [21] Takács J., A phenomenological mathematical model of hysteresis, COMPEL, vol. 20, no. 4, pp. 1002–1015 (2001).
  • [22] Takács J., Mathematics of hysteretic phenomena: The T(x) model for the description of hysteresis, Weinheim, Wiley-VCH (2003).
  • [23] Dośpiał M. et al., Modeling the Hysteresis Loop in Hard Magnetic Materials Using T(x) Model, Acta Phys. Pol. A, vol. 126, no. 1, pp. 170–171 (2014).
  • [24] Bavendiek G., Steentjes S., Sabirov J., Hameyer K., Magnetization models for hard magnetic material, 8th International Conference on Magnetism and Metallurgy, Dresden, Germany, 12th to 14th 2018: proceedings, Freiberg, Universitätsverlag (2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f334dd3a-e670-4ef8-ad6d-a215f6b63ad9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.