Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A comparative analysis concerning the influence of different factors on momentum transfer in mechanically agitated systems was carried out on the basis of experimental results for solid-liquid, gas-liquid and gas-solid-liquid systems. The effects of the impeller - baffles system geometry, scale of the agitated vessel, type and number of impellers and their off-bottom clearance, as well as physical properties of the multiphase systems on the critical impeller speeds needed to produce suspension or dispersion, power consumption and gas hold-up were analysed and evaluated.
Czasopismo
Rocznik
Tom
Strony
41--53
Opis fizyczny
Bibliogr. 35 poz., tab., rys.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Adamiak R., 2005. Experimental studies of conditions for gas dispersion in liquid in the stirred tank on different scale. PhD Thesis, Politechnika Szczecińska, Szczecin (in Polish).
- 2. Adamiak R., Karcz J., 2007. Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems. Chem. Pap., 61, 16-23. DOI: 10.2478/s11696-006-0089-6.
- 3. Bao Y., Hao Z. Gao Z., Shi L., Smith J.M., 2005. Suspension of buoyant particles in a three phase stirred tank. Chem. Eng. Sci., 60, 2283-2292. DOI: 10.1016j.ces.2005.10040.
- 4. Cudak M., 2011. Process characteristics for the mechanically agitated gas-liquid systems in the turbulent fluid flow. Przem. Chem., 90, 1628-1632 (in Polish).
- 5. Cudak M., 2014. Hydrodynamic characteristics of mechanically agitated air-aqueous sucrose solutions. Chem.Process Eng., 35, 1, 97-107. DOI: 10.2478/cpe-2014-0007.
- 6. Etchells A.W., 2001. Mixing of floating solids. Plenary Lecture. Proceedings of the 4th International Symposium on Mixing in Industrial Processes ISMIP 4, 14-16 May 2001, Toulouse, France.
- 7. Harnby N., Edwards M.F., Nienow A.W., 1992. Mixing in the process industries, Butterworth Heineman, Oxford, UK.
- 8. Kamieński J., 2004. Agitation of multiphase systems. WNT, Warszawa (in Polish).
- 9. Kamieński J., Niżnik J., 2001. Gas hold-up for gas-liquid system agitated with dual impellers. Inż. Chem. Proc., 22, 3C, 597-603 (in Polish).
- 10. Karcz J., Adamiak R., Kiełbus-Rąpała A., 2007. Agitation of gas-liquid systems. Scale-up effects on the process characteristics. Chem. Process Eng., 28, 93-113.
- 11. Karcz J., Mackiewicz B., 2006. Suspending of floating solids in an agitated vessel. Chem. Process Eng., 27, 1517-1533.
- 12. Karcz J., Mackiewicz B., 2007. An effect of particles wettability on the draw down of floating solids in a baffled agitated vessel equipped with a high-speed impeller. Chem. Process Eng., 28, 661-672.
- 13. Karcz J., Mackiewicz B., 2009. Effects of vessel baffling on the drawdown of floating solids. Chem. Pap., 63, 2, 164-171. DOI: 10.2478/s11696-009-0011-0.
- 14. Karcz J., Siciarz R., 2004. An analysis of the stirred tank scale on the gas-liquid dispersion In the tank with single or dual impellers. Inż. Chem. Proc., 25, 1075-1081 (in Polish).
- 15. Karcz J., Siciarz R., Bielka I., 2004. Gas hold-up in a reactor with dual system of impellers. Chem. Pap., 58, 404-409.
- 16. Kiełbus-Rąpała A., Karcz J., 2010. Solid suspension and gas dispersion in gas-solid-liquid agitated systems. Chem. Pap. 64, 2, 154-162. DOI: 10.2478/s11696-009-0104-9.
- 17. Kiełbus-Rąpała A., Karcz J., 2012. Experimental analysis of the hydrodynamics of a three-phase systems in a vessel with two impellers. Chem. Pap., 66, 6, 574-582. DOI: 10.2478/s11696-012-0157-z.
- 18. Kiełbus-Rąpała A., Karcz J., Cudak M., 2011. The effect of the physical properties of the liquid phase on the gasliquid mass transfer coefficient in two- and three-phase agitated systems. Chem. Pap., 65, 2, 185-192. DOI:10.2478/s11696-011-0004-7.
- 19. Major-Godlewska M., Karcz J., 2003. Gas hold-up and power consumption for gas-liquid system agitated in a stirred tank equipped with vertical coil. Chem. Pap., 57, 432-437.
- 20. Major-Godlewska M., Karcz J., 2012. Agitation of a gas-solid-liquid system in a vessel with high-speed impeller and vertical tubular coil. Chem. Pap., 66, 6, 566-573. DOI: 10.2478/s11696-012-0148-0.
- 21. Major-Godlewska M., Karcz J., 2011. Process characteristics for gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap., 65, 132-138. DOI: 10.2478//S11696-010-0080-0.
- 22. Montante G., Horn D., Paglianti A., 2006. Gas-liquid flow and bubble size distribution in stirred tanks. Chem.Eng. Sci., 63, 2107-2118. DOI: 10.1016/j.ces.2008.01.005.
- 23. Montante G., Paglianti A., Magelli F., 2007. Experimental analysis and computational modeling of gas-liquid stirred vessels. Chem. Eng. Res. Des., 85, 647-653. DOI: 10.1205/cherd06141.
- 24. Moucha T., Linek V., Prokopowa E., 2003. Gas hold-up, mixing time and gas–liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci., 58, 1839-1846. DOI: 10.1016/S0009-2509(02)00682-6.
- 25. Nienow A.W., 1968. Suspension of solid particles in turbine agitated baffled vessels. Chem. Eng. Sci., 23, 12, 1453-1459. DOI: 10.1016/0009-2509(68)89055-4.
- 26. Nienow A.W., Lilly M.D., 1996. Gas–liquid mixing studies: A comparison of Rushton turbines with some modern impellers. Trans IChemE, 74A, 417-423.
- 27. Ozcan-Taskin G., 2006. Effect of scale on the draw down of floating solids. Chem. Eng. Sci., 60, 2871-2879. DOI: 10.1016/j.ces.2005.10.061.
- 28. Ozcan-Taskin G., Wei H., 2003. The effect of impeller-to-tank diameter ratio on draw down of solids. Chem.Eng. Sci., 58, 2011-2022. DOI: 10.1016/S0009-2509(03)00024-1.
- 29. Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of Industrial Mixing. Wiley-Interscience, Hoboken, New Jersey.
- 30. Rieger F., Ditl P., 1994. Suspension of solid particles. Chem. Eng. Sci., 49, 14, 2219-2227. DOI: 10.1016/0009-2509(94)E0029-P.
- 31. Stręk F., 1981. Agitation and agitated vessels. WNT, Warszawa (in Polish).
- 32. Takenaka K., Ciervo G., Monti D., Bujalski W., Etchells A.W., Nienow A.W., 2001. Mixing of three-phase systems at high solid content (up to 40% w/w) using radial and mixed flow impellers. J. Chem. Eng. Japan, 34, 606-612. DOI: 10.1252/jcej.34.606.
- 33. Warmoeskerken M.M.C.G., 1986. Gas-liquid dispersing characteristics of turbine agitators. PhD thesis, Technische Hogeschool Delft, The Netherlands.
- 34. Zhu Y., Wu J., 2002. Critical impeller speed for suspending solids in aerated agitation tanks. Canadian J. Chem.Eng., 80, 1-5. DOI: 10.1002/cjce.5450800417.
- 35. Zwietering T.N., 1958. Suspending of solids particles in liquid by agitation. Chem. Eng. Sci., 8, 244-253. DOI: 10.1016/0009-2509(58)85031-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f333a149-eb49-4f10-bf05-a41fa4ad62f2