PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minerały autigeniczne i osady w strefie hyporeicznej aluwiów Białej Przemszy zanieczyszczonej przez górnictwo rud metali

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Authigenic minerals and sediments in the hyporheic zone of the Biała Przemsza River polluted by metal ore mining
Języki publikacji
PL
Abstrakty
EN
Sediments and waters of the hyporheic zone have been investigated in the middle reach of the Biala Przemsza River (southern Poland). The river is polluted with mine waters dischargedfrom lead-zinc ore mines, and ground waters sampled from piezometers in a sand bar are polluted to a similar degree down to a depth of at least 3 m. Very high content of heavy metals in the upper 1 m-thick strata of the bar indicates that their accumulation follows start-up of the lead-zinc mining in the mid-20th century. Common authigenic pyrite, gypsum and other less widespread heavy metal minerals are observed in the sediments of both the mining- and pre-mining times. It is related to the intense infiltration of sulphate-rich waters into the sand bar and microbially controlled anoxic conditions, which favour pyrite formation.
Rocznik
Strony
650--660
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Geologii, Geofizyki i Ochrony Środowiska, al. Mickiewicza 30, 30-059 Kraków
autor
  • AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Geologii, Geofizyki i Ochrony Środowiska, al. Mickiewicza 30, 30-059 Kraków
autor
  • AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Geologii, Geofizyki i Ochrony Środowiska, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • 1. ALEKSANDER-KWATERCZAK U., CISZEWSKI D. 2016 - Pollutant dispersal in groundwater and sediments of gaining and losing river reaches affected by metal mining. Env. Earth Sci., 75: 95.
  • 2. BENNER S.G., SMART E.W., MOORE J.N. 1995 - Metal behavior during surface groundwater interaction, Silver Bow Creek, Montana. Env. Sc. Tech., 29: 1789-1795.
  • 3. CAVALAZZI B., AGANGI A., BARBIERI R., FRANCHI F., GASPAROTTO G. 2014 - The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced processes. Geol. Ore Deposits, 56: 440-452.
  • 4. CISZEWSKI D. 1998 - Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: consequences for pollution monitoring (Upper Silesia, Poland). Env. Geol., 36: 45-54.
  • 5. CISZEWSKI D., BIJATA P. 2015 - Hyporheic zone hydrochemistry of the mine-polluted river. J. Geosc. Env. Protec., 3: 47-52.
  • 6. CISZEWSKI D., CZAJKA A. 2015 - Human-induced sedimentation patterns of a channelized lowland river. Earth Surf. Proc. Landf., 40: 783-795.
  • 7. FULLER C.C., BARGAR J.C. 2014 - Processes of zinc attenuation by biogenic manganese oxides forming in hyporheic zone of Pinal Creek, Arizona. Env. Sc. Tech., 48: 2165-2172.
  • 8. GANDY C.J., SMITH J.W.N., JARVIS A.P. 2007 - Attenuation of mining-derived pollutants in the hyporheic zone: a review. Sc. Tot. Env., 373: 435-446.
  • 9. HANCOCK P.J. 2002 - Human impacts on the stream-groundwater exchange zone. Env. Manag., 29: 763-781.
  • 10. HANCOCK P.J., BOULTON A.J., HUMPHREYS W.F. 2005 - Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol. J., 13: 98-111.
  • 11. HARVEY J.W., FULLER C.C. 1998 - Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Wat. Res. Research, 34: 623-636.
  • 12. HESTER E.T., GOOSEFF M.N. 2010 - Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams. Env. Sc. Tech., 44: 1521-1525.
  • 13. JABŁOŃSKA-CZAPLA M., NOCOŃ K., SZOPA S., ŁYKO A. 2016 - Impact of the Pb and Zn ore mining industry on the pollution of the Biała Przemsza River, Poland. Env. Monit. Assess., 188: 262.
  • 14. JONES J.B., HOLMES R.M. 1996 - Surface-subsurface interactions in stream ecosystems. Trends Ecol. Evol., 11: 239-242.
  • 15. KASPER T., FRENZEL P., HABERZETTL T., SCHWARZ A., DAYT G., MESCHNER S., WANG J., ZHU L., MAUSBACHER R. 2013 - Interplay between redox conditions and hydrological changes in sediments from Lake Nam Co (Tibetan Plateau) during the past 4000 cal BP inferred from geochemical and micropaleontological analyses. Paleog. Paleocl. Paleoec., 392: 261-271.
  • 16. KRAUSE S., HANNAH D.M., FLECKENSTEIN J.H., HEPPELL C.M., KAESER D, PICKUP R., PINAY G., ROBERTSON A.L., WOOD P.J. 2011 - Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydr., 4: 481-499.
  • 17. KUCHA H., STUMPFL E.F. 1992 - Thiosulphates as precursors of banded sphalerite and pyrite at Bleiberg, Austria. Miner. Mag., 56: 165-172.
  • 18. KUCHA H., VIAENE W. 1993 - Compounds with mixed and intermediate sulfur valences as precursors of banded sulfides in carbonate-hosted Zn-Pb deposits in Belgium and Poland. Miner. Deposita, 28: 13-21.
  • 19. KUCHA H., SCHROLL E., STUMPFL E.F. 2005 - Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Miner. Deposita, 40: 123-126.
  • 20. KUCHA H., SCHROLL E., RAITH J.G., HALAS S. 2010 - Microbial Sphalerite Formation in Carbonate-Hosted Zn-Pb Ores, Bleiberg, Austria: Micro- to Nanotextural and Sulfur Isotope Evidence. Econ. Geol., 105: 1005-1023.
  • 21. LABRENZ M., DRUSCHEL G.K., THOMASEN-EBERT T., GILBERT B., WELCH S.A., KEMNER K.M., LOGAN G.A., SUMMONS R.E., DE STASIO G., BOND P.L., LAI B., KELLY S.D., BANFIELD J.F. 2000 -Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290: 1744-1747.
  • 22. NOCOŃ W., NOCOŃ K., BARBUSIŃSKI K., KERNER J. 2012 - The influence of the zinc-lead ore industry on the level of the Biała Przemsza bottom sediments contamination. Arch. Civ. Eng. Env., 1: 65-70.
  • 23. OTERO X.L., HUERTA-DIAZ M.A., DE LAPENA S. 2013 - Sand as a relevant fraction in geochemical studies in intertidal environments. Env. Monit. Assess., 185: 7945-7959.
  • 24. RICKARD D. 2012 - Sulfidic sediments and sedimentary rocks. Developments in Sedimentology 65. Elsevier, Amsterdam. SAWŁOWICZ Z. 1993 - Pyrite framboids and their development: a new conceptual mechanism. Geol. Rund., 82: 148-156.
  • 25. SCHOONEN M.A.A. 2004 - Mechanisms of sedimentary pyrite formation. Geol. Soc. Amer. Spec. Pap., 379: 117-134.
  • 26. SHI C.D., ZHU R.X., SUCHY V., ZEMAN A., GUO B., PAN Y.X. 2001-Identification and origins of iron sulfides in Czech loess. Geophys. Res. Lett., 28: 3903-3906.
  • 27. SMIEJA-KRÓL B., JANECZEK J., BAUEREK A., THORSETH I.H. 2015 - The role of autigenic sulfides in immobilization of potentially toxic metals in the Bagno Bory wetland, southern Poland. Env. Sc. Pollut. Res., 22: 15495-15505.
  • 28. TRISKA F.J., KENNEDY V.C., AVANZINO R.J., ZELLWEGER G.W., BENCALAK.E. 1989 - Retention and transport of nutrients in3rd-order stream in northwestern California - hyporheic processes. Ecology, 70: 1893-1905.
  • 29. WILKIN RT., BARNES HL., BRANTLEY SL. 1996 - The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geoch. Cosm. Acta, 60: 3897-3912.
  • 30. WOESSNER W.W. 2000 - Streams and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water, 38: 423-429.
  • 31. XIE X., JOHNSON T.M., WANG Y., LUNDSTROM C.C., ELLIS A., WANG X., DUAN M., LI J. 2014 - Pathways of arsenic from sediments to groundwater in the hyporheic zone: evidence from an iron isotope study. J. Hydrol., 511: 509-517.
  • 32. XU J., MURAYAMA M., ROCO CH.M., VEERAMANI H., MICHEL F.M., RIMSTIDT J.D., WINKLER D., HOCHELLA M.F. JR. 2016 - Highly defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: A comparative study with their abiogenic analogues. Geoch. Cosm. Acta, 180: 1-14.
  • 33. ZHANG M., KONISHI H., XU H., SUN X., LU H., WU D., WU N. 2014-Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. J. Asian Earth Sc., 92: 293-301.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f32b002c-8516-4f07-9573-f74c23c19d32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.