PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of thermal imaging cameras for smartphone: SEEK THERMAL compact pro and FLIR ONE pro for human stress detection – comparison and study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermography as an innovative diagnostic technique with non-contact temperature measurement is used in many industries – science, industry, medicine, and security. When using thermography in the field of health, images and images sequences obtained from thermal imaging cameras allow to record the temperature distribution in order to further recognize whether the state of the body is consistent with the defined parameters or whether there are deviations. However, it is worth paying attention to the measurement accuracy of thermal imaging cameras, their specification, and image quality of thermograms. In the case of recording stress states, measurement discrepancies between thermal imaging cameras for smartphone may affect the final results. Therefore, this article focuses on the comparison of the possibility of recording and detecting stress using two smartphone thermal imaging cameras: SEEK THERMAL Compact Pro and FLIR ONE Pro. The specifications of both cameras were compared. At the same time, the possibility of recording stress using smartphone thermal imaging cameras was confirmed on the basis of an exemplary study. The results of the comparison and analysis show that smartphone thermography can be a quick registration and diagnostic method in behavioral-biomedical issues.
Rocznik
Strony
122--138
Opis fizyczny
Bibliogr. 40 poz., fig., tab.
Twórcy
  • Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Poland
Bibliografia
  • [1] Ahn, S. M., Chun, J. H., Hong, S., Lee, C.-K., Yoo, B., Oh, J. S., & Kim, Y.-G. (2022). The value of thermal imaging for knee arthritis: A single-center observational study. Yonsei Medical Journal, 63(2), 141–147. https://doi.org/10.3349/ymj.2022.63.2.141
  • [2] Akbar, F., Bayraktaroglu, A. E., Buddharaju, P., Da Cunha Silva, D. R., Gao, G., Grover, T., Gutierrez-Osuna, R., Jones, N. C., Mark, G., Pavlidis, I., Storer, K., Wang, Z., Wesley, A., & Zaman, S. (2019). Email makes you sweat. Examining email interruptions and stress using thermal imaging. Conference on Human Factors in Computing Systems (CHI '19) (pp. 1-14). Association for Computing Machinery. https://doi.org/10.1145/3290605.3300898
  • [3] Anishchenko, L., & Turetzkaya, A. (2020). Improved non-contact mental stress detection via bioradar. 2020 International Conference on Biomedical Innovations and Applications (BIA) (pp. 21-24). IEEE. https://doi.org/10.1109/BIA50171.2020.9244492
  • [4] Anusha, A., Padmaja, N., Manaswi, D. V. S., & Kumar, B. S. (2020). IOT based stress detection and health monitoring system. HELIX, 10(2). 161-167. https://doi.org/10.29042/2020-10-2-161-167
  • [5] Bara, C. P., Papakostas, M., Mihalcea, R. (2020). A deep learning approach towards multimodal stress detection. Workshop on Affective Content Analysis (AAAI-20) (pp. 67-81). CEUR Workshop Proceedings.
  • [6] Baran, K. (2021a). Stress detection and monitoring based on low-cost mobile thermography. 25th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2021) (pp. 1102-1110). Procedia Computer Science. https://doi.org/10.1016/j.procs.2021.08.113
  • [7] Baran, K. (2021b). Thermal imaging of stress: A review. In. M. Charatynowicz, P. Karczmarek, A. Kiersztyn (Eds.), Computational intelligence, information systems and data mining (pp. 95-113). Wydawnictwo Politechniki Lubelskiej.
  • [8] Bogomilsky, S., Hoffer, O., Shalmon, G., & Scheinowitz, M. (2022). Preliminary study of thermal density distribution and entropy analysis during cycling exercise stress test using infrared thermography. Scientific Reports, 12(1), 14018. https://doi.org/10.1038/s41598-022-18233-5
  • [9] Campbell, J. S., & Mead, M. N. (2022). Human medical thermography. CRC Press.
  • [10] Cardone, D., Perpetuini, D., Filippini, C., Spadolini, E., Mancini, L., Chiarelli, A. M., & Merla, A. (2020). Driver stress state evaluation by means of thermal imaging: A supervised machine learning approach based on ECG signal. Applied Sciences, 10(16), 5673. https://doi.org/10.3390/app10165673
  • [11] Cho, Y., Bianchi-Berthouze, N., & Julier, S. J. (2017a). DeepBreath: Deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII) (pp. 456-463). IEEE. https://doi.org/10.1109/acii.2017.8273639
  • [12] Cho, Y., Julier, S. J., Marquardt, N., & Bianchi-Berthouze, N. (2017b). Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging. Biomedical Optics Express, 8(10), 4480-4503. https://doi.org/10.1364/BOE.8.004480
  • [13] Gedam, S., & Paul, S. (2020). Automatic stress detection using wearable sensors and machine learning: A review. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE. https://doi.org/10.1109/iccnt49239.2020.9225692
  • [14] Germi, J. W., Mensah-Brown, K. G., Chen, H. I., & Schuster, J. M. (2022). Use of smartphone-integrated infrared thermography to monitor sympathetic dysfunction as a surgical complication. Interdisciplinary Neurosurgery, 28, 101475. https://doi.org/10.1016/j.inat.2021.101475
  • [15] Gomez de Mariscal, E., Munoz-Barrutia, A., de Frutos, J., Gonzalez-Marcos, A. P., & Ugena Martinez, A. M. (2017). Infrared thermography processing to characterize emotional stress: a pilot study. 8th International Conference of Pattern Recognition Systems (ICPRS 2017). https://doi.org/10.1049/cp.2017.0148
  • [16] Hallock, G. G. (2019). Dynamic infrared thermography and smartphone thermal imaging as an adjunct for preoperative, intraoperative, and postoperative perforator free flap monitoring. Plastic and. Aesthetic Research, 6, 29. https://doi.org/10.20517/2347-9264.2019.029
  • [17] Kaga, S., & Kato, S. (2019). Extraction of useful features for stress detection using various biosignals doing mental arithmetic. IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech) (pp. 153-154). IEEE. https://doi.org/10.1109/LifeTech.2019.8883967
  • [18] Kanazawa, T., Nakagami, G., Goto, T., Noguchi, H., Oe, M., Miyagaki, T., Hayashi, A., Sasaki, S., & Sanada, H. (2016). Use of smartphone attached mobile thermography assessing subclinical inflammation: a pilot study. Journal of Wound Care, 25(4), 177-182. https://doi.org/10.12968/jowc.2016.25.4.177
  • [19] Kirimtat, A., Krejcar, O., Selamat, A., & Herrera-Viedma, E. (2020). FLIR vs SEEK thermal cameras in biomedicine: comparative diagnosis through infrared thermography. BMC Bioinformatics, 21(2), 88. https://doi.org/10.1186/s12859-020-3355-7
  • [20] Kyriakou, K., Resch, B., Sagl, G., Petutschnig, A., Werner, C., Niederseer, D., Liedlgruber, M., Wilhelm, F., Osborne, T., & Pykett, J. (2019). Detecting moments of stress from measurements of wearable physiological sensors. Sensors, 19(17), 3805. https://doi.org/10.3390/s19173805
  • [21] Liu, X., Shan, Y., Peng, M., Chen, H., & Chen, T. (2020a). Human stress and StO2: database, features, and classification of emotional and physical stress. Entropy, 22(9), 962. https://doi.org/10.3390/e22090962
  • [22] Liu, X., Xiao, X., Cao, R., & Chen, T. (2020b). Evolution of facial tissue oxygen saturation and detection of human physical stress. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC) (pp. 144-147). IEEE. https://doi.org/10.1109/ipec49694.2020.9115140
  • [23] Luze, H., Nischwitz, S. P., Wurzer, P., Winter, R., Spendel, S., Kamolz, L. P., & Bjelic-Radisic, V. (2022). Assessment of mastectomy skin flaps for immediate reconstruction with implants via thermal imaging -A suitable, personalized approach?. Journal of Personalized Medicine, 12(5), 740. https://doi.org/10.3390/jpm12050740
  • [24] Machado Fernández, J. R., & Anishchenko, L. (2018). Mental stress detection using bioradar respiratory signals. Biomedical Signal Processing and Control, 43, 244-249. https://doi.org/10.1016/j.bspc.2018.03.006
  • [25] Meshram, S., Babu, R., & Adhikari, J. (2020). Detecting psychological stress using Machine Learning over social media interaction. 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 646-649). IEEE. https://doi.org/10.1109/ICCES48766.2020.9137931
  • [26] Morales-Ivorra, I., Narváez, J., Gomez Vaquero, C., Nolla, J. M., Moragues Pastor, C., Grados Canovas, D., Narvaez, J. A., & Marin-López, M. A. (2022). AB1343 on the development of new disease activity scores for remote assessment of patient with rheumatoid arthritis using thermography and machine learning. Annals of the Rheumatic Diseases, 81(1), 1778. https://doi.org/10.1136/annrheumdis-2022-eular.1567
  • [27] Moran-Romero, M. A., & López-Mendoza, F. J. (2022). Postoperative monitoring of free flaps using Smartphone thermal imaging may lead to ambiguous results: Three case reports. International Microsurgery Journal, 6(1), 4. https://doi.org/10.24983/scitemed.imj.2022.00163
  • [28] Nassar, A. H., Maselli, A. M., Manstein, S., Shiah, E., Slatnick, B. L., Dowlatshahi, A. S., Cauley, R., & Lee, B. T. (2022). Comparison of various modalities utilized for preoperative planning in microsurgical reconstructive surgery. Journal of Reconstructive Microsurgery, 38(03), 170-180. https://doi.org/10.1055/s-0041-1736316
  • [29] Nath, R. K., & Thapliyal, H. (2021). Smart wristband-based stress detection framework for older adults with cortisol as stress biomarker. IEEE Transactions on Consumer Electronics, 67(1), 30-39. https://doi.org/10.1109/tce.2021.3057806
  • [30] Panicker, S. S., & Gayathri, P. (2019). A survey of machine learning techniques in physiology based mental stress detection systems. Biocybernetics and Biomedical Engineering, 39(2), 444-469. https://doi.org/10.1016/j.bbe.2019.01.004
  • [31] Passos, M. D., & Da Rocha, A. F. (2022). Evaluation of infrared thermography with a portable camera as a diagnostic tool for peripheral arterial disease of the lower limbs compared with color Doppler ultrasonography. Archives of Medical Sciences – Atherosclerotic Diseases, 7(1), 66–72. https://doi.org/10.5114/amsad/150716
  • [32] Pereira, N., & Hallock, G. G. (2021). Smartphone thermography for lower extremity local flap perforator mapping. Journal of Reconstructive Microsurgery, 37(01), 059-066. https://doi.org/10.1055/s-0039-3402032
  • [33] Qin, Q., Nakagami, G., Ohashi, Y., Dai, M., Sanada, H., & Oe, M. (2022). Development of a self-monitoring tool for diabetic foot prevention using smartphone-based thermography: Plantar thermal pattern changes and usability in the home environment. Drug Discoveries & Therapeutics, 16(4), 169-176. https://doi.org/10.5582/ddt.2022.01050
  • [34] Ring, E. F. J. (2007). The historical development of temperature measurement in medicine. Infrared Physics & Technology, 49(3), 297-301. https://doi.org/10.1016/j.infrared.2006.06.029
  • [35] Rodríguez-Arce, J., Lara-Flores, L., Portillo-Rodríguez, O., & Martínez-Méndez, R. (2020). Towards an anxiety and stress recognition system for academic environments based on physiological features. Computer methods and programs in biomedicine, 190, 105408. https://doi.org/10.1016/j.cmpb.2020.105408
  • [36] Shanmugasundaram, G., Yazhini, S., Hemapratha, E., & Nithya, S. (2019). A comprehensive review on stress detection techniques. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSCAN.2019.8878795
  • [37] Sharma, N., Dhall, A., Gedeon, T., & Goecke, R. (2013). Modeling stress using thermal facial patterns: A spatio-temporal approach. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (pp. 387-392). IEEE. https://doi.org/10.1109/acii.2013.70
  • [38] Sharma, S., Singh, G., & Sharma, M. (2021). A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans. Computers in Biology and Medicine, 134, 104450. https://doi.org/10.1016/j.compbiomed.2021.104450
  • [39] Theuma, F., & Cassar, K. (2018). The use of smartphone-attached thermography camera in diagnosis of acute lower limb ischemia. Journal of Vascular Surgery, 67(4), 1297. https://doi.org/10.1016/j.jvs.2017.02.054
  • [40] Xue, E. Y., Chandler, L. K., Viviano, S. L., & Keith, J. D. (2018). Use of FLIR ONE smartphone thermography in burn wound assessment. Annals of Plastic Surgery, 80(4), S236-S238. https://doi.org/10.1097/Sap.0000000000001363
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f32140ec-1c2e-4153-9759-3dea3e7e78bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.