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ABSTRACT: The paper presents a model to coordinate the predictive-preventive maintenance process of
Offshore Wind Farm (OWF) with optimal Vessel Fleet (VF) size support system. The model is presented as a bi-
level problem. On the first level, the model coordinates the predictive-preventive maintenance of the OWF and
the distributed Power System minimizing the risk of Expected Energy not Supply (EENS). The risk is estimated
with a sequential Markov Chain Monte Carlo (MCMC) simulation model. On the second level the model
determining the optimal fleet size of vessels to support maintenance activities at OWF.

1 INTRODUCTION

By the end of 2017, Europe leaded the global offshore
energy market, with 83.9% share of the total installed
capacity of 18.814 MW from 4.149 grid-connected
wind turbines of 92 offshore wind farms in 11
countries. The UK has the largest amount
representing 43.3%, followed by Germany. The total
European offshore wind capacity is forecast at 25 GW
by 2020 and 70 GW by 2030 (by then 7-11% of the
EU’s electricity demand is produced by offshore
wind). Besides, the Chinese offshore wind energy
market began in 2016 (14.9% market share), followed
by Vietnam, Japan, South Korea and the US. With the
growing engagement in the offshore wind industry
worldwide, it is natural to investigate the operations
and maintenance problems of the offshore wind
farms. Given the difficulty in the techniques,
availability, and accessibility due to the uncertain
ocean wind environment, the maintenance costs for
the offshore wind farms can form up to 25-30% of the
energy cost and is typically estimated at five to ten
times of the onshore maintenance cost. Once a failure
occurs, a longer system downtime, and more loss in

revenue follow. Therefore, it is useful to study the
maintenance problem of the offshore wind farms
Zhong et al. (2019).

In recent literature we find several papers that
study the maintenance problem of the offshore wind
farms. Below we discuss some of the most accurate
references in the solution of the problem posed:

Alcoba et al. (2017) propose a discrete optimization
model that chooses an optimal fleet of vessel to
support maintenance operations at Offshore Wind
Farm. The model is presented as a bi-level problem.
On the fist (tactical) level, decisions are made on the
fleet composition for a certain time horizon. On the
second (operational) level, the fleet is used to
optimize the schedule of operations needed at the
Offshore Wind Farm, given events of failures and
weather conditions.

Zhong et al. (2018) proposed a non-linear multi-
objective programming model including two newly
defined objectives with thirteen families of constraints
suitable for the preventive maintenance of offshore
wind farms. In order to solve our model effectively,
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the non-dominated sorting genetic algorithm II,
especially for the multi-objective optimization is
utilized and Pareto-optimal solutions of schedules can
be obtained to offer adequate support to decision-
makers. Finally, an example is given to illustrate the
performances of the devised model and algorithm
and explore the relationships of the two targets with
the help of a contrast model.

Zhong et al. (2019) formulate a fuzzy multi-
objective non-linear chance-constrained programming
model with newly defined reliability and cost criteria
and constraints to obtain satisfying schedules for
wind turbine maintenance. To solve the optimization
model, a 2-phase solution framework integrating the
operational law for fuzzy arithmetic and the non-
dominated sorting genetic algorithm II for multi-
objective programming is developed. Pareto-optimal
solutions of the schedules are obtained to form the
trade-offs between the reliability maximization and
cost minimization objectives. A numerical example is
illustrated to validate the model.

Stalhane et al. (2016) determine the optimal fleet
size and mix of vessels to support maintenance
activities at offshore wind farms. A two-stage
stochastic programming model is proposed where
uncertainty in demand and weather conditions are
considered. The model aims to consider the whole life
span of an offshore wind farm and should at the same
time remain solvable for realistically sized problem
instances. The results from a computational study
based on realistic data is provided.

Florian and Sorensen (2017) present how
applications of risk and reliability-based methods for
planning of Operation and Maintenance (O&M), can
positively impact the cost of maintenance. The study
focuses on maintenance of wind turbine blades, for
which a fracture mechanics-based degradation model
is set up. Based on this model, and the uncertain input
in terms of cracking on the blades at the start of the
lifetime, an initial reliability estimate is made. During
the operation period, inspections are performed at
regular time intervals, and the results are then used to
update the reliability estimates using Bayesian
networks. Based on the updated estimate, decisions
on repairs are taken, thus potentially minimizing the
maintenance effort while maintaining a target
reliability level. To showcase the potential cost
reduction, a study is made using a discrete event
simulator. Two different preventive approaches are
used. The first is a traditional time/condition-based
strategy, where inspections are made with a fixed
annual frequency and defects are repaired on
detection. The second approach consists of risk-based
inspection  planning, using the methodology
described in the first part of the paper, and the cost
and availability savings relative to the previous
strategy are underlined. A detailed description on the
advantages of disadvantages of the risk strategy is
given in the end of the paper.

Halvorsen-Weare et al. (2017) introduces a meta-
heuristic solution method to determine cost-efficient
vessel fleets to support maintenance tasks at offshore
wind farms under uncertainty. It considers weather
conditions and failures leading to corrective
maintenance tasks as stochastic parameters and
evaluates candidate solutions by a simulation
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program. The solution method has been incorporated
in a decision support tool. Computational
experiments, including comparison of results with an
exact solution method, illustrate that the decision
support tool can be used to provide near-optimal
solutions within acceptable computational time.

1.1 Contribution of this work

Based on the previous references, in this paper we
contribute with another approach to the maintenance
problem solution of the offshore wind farms. In the
first part of the paper (Level I) we analyze the relation
between the Power System and the offshore wind
farm and in the second part (Level II) we propose a
new objective function based on workers demand to
determinate the composition of the vessel fleet size
support system to carry out the maintenance task in
the offshore wind farms. On both levels we optimize
non-linear stochastic functions.

2 MATERIALS AND METHODS

The bi-level optimization model formalized in this
section to coordinate the Predictive-Preventive
Maintenance Scheduling (PPMS) of the OWF with
optimal vessel fleet size support system is structured
in two steps. The first one consists in modeling the
Power System and OWF with MCMC simulation
model estimating the risk indicator EENS and based
in this indicator and coordinate the PPMS, the second
one in determining the optimal fleet size of vessels to
support maintenance activities at OWF based on the
workers demand and the fleet size capacity.

2.1 Level I: Power System
2.1.1 Thermal unit modeling

The operation of a thermal generating unit is
continuous, eventually fails and is repairable. This
random behavior can be described from Markov
processes Yan et al. (2016). The Markov process
allows modeling two stages: available and
unavailable. For this case, transition rates are defined
between the two states in which the generator can be.
If the probability function of the transition rates from
one state to another is exponential, they are denoted
as A (failure rate) and u (repair rate) of the generator.
Figure 1 shows a Markov process with two states:
available and unavailable, and its transition rates A
and p. For the two-state system represented in Figure
1, the system of differential equations with initial
conditions Po(f) + Pi(t) = 1, Po(0) = 1 and P1(0) = 0, that
models the Markov process is shown in (1).
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Figure 1. Two-state model for a generating unit.
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The stationary solution of the differential

equations system is denoted as availability A and
unavailability U of a thermal generating unit. The
parameter used to evaluate the static capacity of a
thermal generating unit is the unavailability (2), also
known as the Forced Outage Rate (FOR).

A (2)

A+pu m+r

FOR =U =

where the Mean Time to Failure (MTTF) is equal to
1/4, and the Mean Time to Repair (MTTR) is equal to

Vp.

The MTTF and MTTR parameters are valid only if
the random variables follow an exponential
distribution. If the random behavior of Time to
Failure (TTF) and Repair Times (TTR) is known, its
average value can be obtained and consequently the
FOR for each unit.

The generating units in the Power System are
represented by a two-state model or a multi-state
model. In the two-state model, the generating unit is
considered fully available or totally unavailable to
generate electricity (see Figure 1) and the two-state
model is used to represent the generators that operate
as base load. However, in the Power Systems there
are peak load units or intermittent operating units.
The functional characteristic that distinguish them is
that they are turned on and off frequently. It is
necessary to consider this behavior in the generating
units’” model. The Sub-Committee on Application of
Probabilistic Methods of the IEEE proposed a four-
state model Billinton and Huang (2006) for these
generating units. This model is shown in Figure 2,
where T is the average reserve shutdown time
between periods of need, D is the average in-service
time per occasion of demand and Ps is the probability
of starting failure.
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Figure 2. Four-state model for planning studies.

The four-state model, like the two-state model, is
represented as a Markov process. The time-dependent
solution of the differential equations system shown in
(3) allows knowing the probabilities of each state. For
the system of differential equations (3), the initial
conditions are Po(f) + Pi(t) + P2(t) + Ps(t) = 1, Po(0) =
P1(0) =1, P2(0) = 0 and P5(0) =0.
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when the probabilities associated with each state are
known, the Utilization Forced Outage Probability
(UFQP) is the probability of a thermal generating unit
not being available when needed (4); therefore, the
four-state model is reduced to a two-state model.

P, 4
s )

UFOR =

The stochastic capacity U,(t) at the time instant ¢
of a thermal generating unit i is determined by the
MTTFi, MTTRi and C,. The parameters MTTF;, MTTR:
and C; allow to simulate with (5) the behavior of
U;(t) generating k independent random numbers,
assuming that they follow an exponential probability
distribution ~with  parameter =1/MTTF,  and

=I/MTTR, , which we will denote in this
investigation as TTFix ~ E (i) and TTRikx ~ E (14).

On the other hand, one of the factors that affects
the Power System capacity, is not stochastic and is not
considered a random phenomenon, it is maintenance
process of the generating units. Maintenance process
is contemplated within the Power System strategies
because it guarantees planned work time for the
generating units. Maintenance is the activity designed
to prevent failures in the production process and in
this way reduce the risks of unexpected stops due to
system failures. In the case of preventive
maintenance, it is the planned activity in the
vulnerable points at the most opportune moment,
destined to avoid failures in the system. It is carried
out under normal conditions, that is, when the
productive process works correctly. In a Power
System, to perform some preventive maintenance
tasks it is necessary that the generating units does not
work, and this causes loss of capacity in the Power
System to supply the load. Due to this reason, it is
advisable that this maintenance process be carried out
at the time of the year where the least load exists, so
that equilibrium and adequate flow are guaranteed in
the Power System. To consider this effect, in this work
the parameters TTMix and TDMik of the generating
unit i are introduced and the equation (5).

The model proposed to simulate conventional
generating units is defined below:

C if t<S, +S, |
Ui(t)=y 0 if S, +S, <t<S, +S, (5)
0 if A +A, <t<A +A
where:i=1,2,...,Ng; 8, =>"TTF, form=2,3, ..,
MN; s, =>"TWR, for m = 2, 3, .., MN;
A =X 1M, for n = 2 3 .., NK
A, => TDM,, forn=2,3, .., NKi
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2.1.2 OWF modeling

The two-state model is used to simulate the
stochastic of faults and repairs in offshore wind
turbines. The stochastic generation capacity PWT(t) of
an OWF at the moment of time ¢ is determined by
MTTFi, MTTR;: and Pi (t) of each offshore wind turbine
i. The difference between thermal and offshore wind
turbine generating units, in this case, is that the power
Pi (t) depends on the wind SW:. In the proposed
model we use Weibull simulation approaches for the
wind speed [Atwa et al. (2011)], so Weibull model
generates random values from the density function
adjusted with historical values. In the case of the
power delivered by each offshore wind turbine we
use the non-linear relationship between wind speed
and wind turbine power given by Karki et al. (2012).

The wind speed is simulated with the Weibull
model [Atwa et al. (2011)] estimating approximately
the shape and scale parameters of the probability
distribution density function with psw and ose. The
Weibull probability distribution function for wind
speed v is denoted as f(v), f and 0 are the shape and

scale parameters of the distribution function
respectively.

B ] 6
tw-2(5] e ©)

The parameters f and 6 are obtained with the
following expressions:

ﬂ[“—] | @)
ﬂSW

— Hsw 8
d F(1+1/ﬁ) ( )

The inverse of cumulative probability distribution
function (9) allows us to simulate the wind speed
generating u uniformly distributed random numbers
[0, 1] as shown in (10).

Fv)=1- eH%] } )

SW,=v=-5In(1-u)"” =-5In(u)"” (10)

The power delivered by each wind turbine is
estimated with the function (11). The non-linear
relationship between wind speed and wind turbine
power is given by,

0 if  0<SW, <V,

Bt - (A+Bx(SW,)+Cx(SW)")x P if V,<SW, <V, (11)
P, if V, <SW, <V,
0 if  SW, 2V,

where Pr, Vi, Vy and Ve are nominal output power,
wind speed necessary for start-up, wind speed
corresponding to the nominal power of the wind
turbine and cutting wind speed per wind turbine
safety reasons respectively Karki et al. (2012).
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The constants A, B, and C depend on Ve, Vr and Ve
as shown in (12) Karki et al. (2012).

3
1 Vi +V,
A= (var)z{vci(vci +V) —4VV, {T} }
1 VetV ] (12)
B= (Vci _Vr)2 {4(Vci +Vr)|: 2Vr :| (3Vci +Vr)}

C :; {24|:Vm+vr:|}
Olu:iivr)2 2Vr

The stochastic behavior of failures and repairs, and
the PPMS is incorporated in PEi(t), modifying a
parameter of (5), as shown in (13).

Pt if t<S, +S§, |

PE(t)=4 0 if S, +S, <t<S, +8§, (13)
0 if A +A  St<A +A
The power of the OWF is defined below as:
NA
PWT (t) = >_PE(t) (14)
i=1

wherei=1,2, ..., NA.

2.1.3 Load curve modeling:

The load curve model is usually represented by
the Daily Peak Load Variation Curve (DPLVC) or the
Hourly Load Duration Curve (LDC) Billinton and
Allan (1996). We used LDC because integrates the
load curve chronological behavior. In the medium-
and long-term planning studies, it is necessary to
know the expected growth of the electrical demand of
the Power System. The more widely used models of
electrical demand forecast are the chronological
series. These models forecast electricity demand
based on historical behavior. ARIMA models (Auto
Regressive, Integrated, Moving Average) are general
models of time series Aminia et al. (2016). The general
model is complex, but the models usually used are
cases simpler. In this paper, an MA model is used,
assuming for the study a 5% electrical demand
growth and an uncertainty around the seasonal
average of 10%, being expressed in (15) as:

D(t) =1,05- 4 +0,10- ¢, (15)

where D(t) is the estimated electrical demand at time
t, w: is the average electrical demand of the last ten
years at time ¢, &t ~ N(0, 0/ is a white noise process
and o: is the standard deviation with respect to the
average electrical demand of the last ten years at time
t.

2.1.4 Risk indicator modeling

The risk function denoted as R(s) can be generated
with the sum X + Y of the random, independent and
non-negative variables X and Y.



The product of R(s) = P(s) Q(s) is defined with the
generating function P(s)=) " ps’ of X and the

generating function Q(s)=2." q;s’ of Y.

Consequently, the generating function of R(s) is
defined by the convolution formula (16).

k
ho=>Pi0 | (16)
j=1

If R(s) is a random, independent and not negative
variable, the arithmetic mean (R1 + R2 + ... + Ru)/n of a
random sample Ri, Rz, ... Ru of the variable R(s) is
approximately equal to the expected value E[R(s)], for
large values of n.

In this investigation, X defined in equation (17) is
probability distribution function of the thermal
generating units stochastic capacity of the Power
System, and Y defined in equation (18) is probability
distribution function of the load curve incorporating
the power delivered by the offshore wind farm as a
negative demand:

X = _Niui(t) 17)
Y =D - 3 PWT,(t) (18)

i=1

where NP is the number of offshore wind farms
considered in the installed capacity of the system.

The risk function is denoted in this investigation as
R. This function is the convolution product of
equations (17) and (18) defined in equation (19):

.
Y- X, if X, <Y,
R: tZZI:l t 1 I<l (19)

0 it X, 2V,

The risk function expected value E[R] is usually
defined in the literature as Expected Energy Not
Supplied (EENS), when the generating units
capacities and the Power System electrical demand
are expressed in megawatts and t = 1, 2, ..., T,
considers the 8 760 hours of the year. In this work, to
estimate E[R] the Monte Carlo simulation method is
used.

2.1.5 Optimization model

The proposed model objective is to minimize the
expected value of the convolution function, between
the probability distribution function of the thermal
generating units stochastic capacity of the Power
System, and the probability distribution function of
the load curve incorporating the power delivered by
the offshore wind farm as a negative demand. The
model is defined below:

min E[R]
subject to:
0<TTM,, <8760 -TDM,

(20)

The stochastic non-linear optimization model
proposed for the PPMS problem solution of the Power
System presents only continuous variables x = TTMix
and is defined in the model constraint intervals. The
independent variable of the objective function to be
optimized x = x1, x2, ..., xnxi depends on the quantity
of preventive maintenance NKi to be coordinated for
each generating unit i. The optimization variables are
only the start times for the first maintenance of each
unit TTMi1. Once TTMi, is established, the remaining
TTMir are calculated adding the corresponding
maintenance intervals, which are invariable.

2.2 Level II: Vessel Fleet Size Support System
2.2.1 Workers demand

The workers demand necessary to carry out the
maintenance tasks in the OWF depends of how many
wind turbines had PPMS at the same time. In this
paper we use an empirical function to determinate the
workers demand according to PPMS proposed for the
Power System in the Level I problem.

The model proposed to determinate the workers
demand WD is defined below:

NWT

WN,, if X, =1
i=1
Nyt

wp, ={ WNa I 2 %= for t=1,2,...,N, (21)

i-1 52,00 Ny
Nyt

WN Ny 5t 1f Xi,[ - NWT
i=1

where WN; workers number necessary to carry out
the maintenance tasks in the offshore wind farm, Nwr
number of offshore wind turbines, Nu number of
hours in the year, x;+ € [0, 1] is a binary variable, so is
equal to 1 when the offshore wind turbine i have a
maintenance tasks at instant of time f, and 0
otherwise.

2.3 Workers capacity

On another hands, the workers capacity depends of
the vessel fleet size. It's typically found vessels and
bases, each one has different capacity and the
selection depends on maintenance tasks and
necessary workers Alcoba et al., 2017; but we can
define a general model as shown below:

i=1 i=1

Ny Ng
WD, = {wc =Y %VC, +Y x,BC,, for t=12,..,N,
(22)

where WC workers number capacity to carry out the
maintenance tasks in the offshore wind farm, Nv
number of vessels, Ns number of bases, Nu number of
hours in the year, VCi+ workers number capacity in
the vessel i at instant of time ¢, BCi: workers number
capacity in the base i at instant of time ¢ and xi+ € [0,
1] is a binary vector with the array x1, x2, ..., xNv, XNv41,
xXNv#2, ..., XNv+NB, SO is equal to 1 when the vessel or
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base i is necessary at instant of time f, and 0
otherwise.

2.3.1 Optimization model

The optimization model objective (23) is to
determine the optimum vessel fleet size support
system that guarantee to minimize the workers
number needed to carry out the maintenance tasks in
the offshore wind farm. The input is described by a
set of decision-making combination x1, x2, ..., xnv,
XNv+1, XNv42, ..., XNv+NB defined in xi ¢ € [0, 1]. Penalties
are introduced when the fleet is not able supplied the
workers demand.

minJWCf -WD} for t=1,2,...,N,

subject to: WC, >2WD, Vt

(23)

3 RESULTS AND DISCUSSIONS

The Power System energy matrix analyzed is
composed of diesel and fuel thermal generating units
of the Table 1 and offshore wind farm of the Table 2.
The OWF has a capacity of 2,75 MW and operates in
base load throughout the year; therefore, two-state
Markov model is used to simulate the wind farm
stochastic capacity. However, in the case of fuel or
diesel generating units, it is different.

The Power System analyzed has a maximum
demand of 18 MW and a static capacity installed of 21
MW distributed in small capacity generating units.
This characteristic condition the Power System
operation. To satisfy the demand, fuel and diesel
generating units are rotated according to the
operating times, therefore, these units operate
intermittently. For this reason, four-state Markov
model is used for the simulation of diesel and fuel
generating units. The offshore wind farm
mathematical model needs other considerations for
the simulation. We assume a wind mean psw = 5.4 m/s
and standard deviation osw = 2.3, and with these
values we calculate the shape and scale parameters of
the Weibull probability distribution density function.
The inverse of cumulative probability distribution
function allows to simulate the wind speed behavior
generating u uniformly distributed random numbers
[0, 1]. The wind turbine used in this paper has a
nominal power Pr of 275 kW, the cut-in speed wind
Ve is 4 m/s, the rated speed wind V; is 10 m/s and the
cut-out wind speed Vo is 25 m/s. For each wind
turbine, the MTTF and MTTR data are shown in Table
2. In the investigation, load curve forecast of the
system used is shown in Figure 3.

In the case of vessel fleet size support system, we
assumed 10 workers demand for each wind turbine to
carry out the maintenance tasks in time, and a fleet
with 4 vessels with 8, 12, 16 and 30 workers capacity
and 3 bases with 12, 24 and 36 workers capacity.
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Table 1. Diesel and fuel units’ indicators.
Unit Capacity (MW) MTTF MTTR D T Ps

1 1.88 150 100 5 20 0.0150
2 1.88 75 10 2 30 0.0090
3 1.88 190 60 2 15 0.0020
4 3.85 550 15 55 20 0.0225
5 3.85 850 25 65 15 0.0095
6 3.85 520 10 50 30 0.0085
7 3.85 720 15 35 15 0.0055

Note: The parameters MTTF, MTTR, D and T are expressed
in hours.

Table 2. Offshore wind turbines indicators.

Wind turbine  Capacity (kW) MTTF MTTR
1 275 2500 485
2 275 1200 670
3 275 1550 380
4 275 1750 190
5 275 2500 990
6 275 550 350
7 275 2950 580
8 275 2450 450
9 275 1700 590
10 275 2580 200

Note: The parameters MTTF and MTTR are expressed in
hours.

3.1 Influence of predictive-preventive maintenance
scheduling.

In the real Power System analyzed, the PPMS of the
generating units reduce considerably the system static
capacity, increasing consequently the risk levels. This
condition is critical in the system because forced
output of a generating unit causes damages to the
customers electric service. In this investigation, it is
identified that the critical condition is associated with
the generating units PPMS improper coordination.
The paper proposes to coordinate the generating units
PPMS with a nonlinear stochastic optimization model
that aims to improve the Power System risk levels as
much as possible (Platform concept). The paper
shows how using the proposed model it is possible to
coordinate the PPMS and improve the Power System
risk levels. The influence of PPMS is considered in the
estimates of risk indicators. Therefore, stochastic
variables and PPMS are considered in the Power
System static capacity simulation. The maintenance
quantity and duration, and the moment when they
are executed in the year, influences the Power System
risk indicators. Conveniently, maintenance should be
spaced in the year. This condition guarantees that the
Power System static capacity is not greatly affected.
The PPMS problem solution is complex because the
search spaces dimension is large. Therefore, it is
necessary to use computational optimization models
to solve this problem. Figure 3 show a PPMS
improper coordination because every maintenance
task starts in the beginning of the year, and Figure 4
show the proposed results for the problem solution.
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Figure 3. Static capacity with PPMS, failures and repairs

time of all thermal generating units and the offshore wind
farm in a simulate year.
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Figure 4. Static capacity with PPMS, failures and repairs
time of all thermal generating units and the offshore wind
farm in a simulate year (Problem solution).

3.2 Optimal vessel fleet size support system

Each maintenance task has several workers associate,
in this paper we assuming that each wind turbine
needs 10 workers to carry out in time the maintenance
task coordinated in the first problem (Level I). The
objective function proposal to determinate the best
vessel fleet size based on workers demand is a no-
linear stochastic function. Bellow we show in the
Figure 5 the best vessel fleet size for a PPMS improper
coordination, and Figure 6 show the best vessel fleet
size to the problem solution.

Hours | Year

Figure 5. Best vessel fleet size.

NN | W S — - -

Figure 6. Best vessel fleet size (Problem solution).

4 CONCLUSIONS

The work shows that the proposed platform concept
based on risk assessment allows to schedule the
PPMS of thermal generating units and offshore wind
farm at the same time in the first level problem. We
have presented a model to determine an optimal
vessel fleet size for operation and maintenance
activities at offshore wind farms in the second level
problem. This paper has described a potential
practical application for risk-based maintenance of
offshore wind turbine.
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