PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/precipitation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The removal of nitrates from aqueous solutions is cumbersome because of their high solubility in water. The use of zero-valent iron (ZVI) for the reduction of nitrates is the chemical process and it is an alternative method to the biological ones. The aim of the present study was to evaluate the effectiveness of nitrates removal from water solution by using the ZVI process. The process was coupled with the removal of COD, phosphates and turbidity by using by-products of nitrates reduction. Batch tests were performed to evaluate the effectiveness of ZVI in the removal of nitrates from aqueous solutions. The effectiveness of nitrates removal was analyzed after 5, 10, 20, 30 and 60 min. and compared to the initial concentration of pollutants. Simultaneously analysis of ammonium nitrogen and nitrites was controlled to identify products of nitrates reduction under various pH. The removal of COD, phosphates and turbidity was also performed in batch tests. The effectiveness of the removal by using three types of chemicals was compared – PIX, FeSO4, and waste Fe2+/Fe3+ from the ZVI process. The results obtained in the study indicate that ZVI can be effectively used in the treatment of water polluted with nitrates and the by-products of the process could be further applied in the removal of COD, phosphates and turbidity. Based on the results the method should be advised as a promising alternative to the technologies used nowadays under technical scale as a technology that fits with a circular economy.
Słowa kluczowe
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr.32 poz., rys., wykr.
Twórcy
  • Częstochowa University of Technology, Poland
  • Częstochowa University of Technology, Poland
Bibliografia
  • 1. Abedin, M.A. Katsumi, T. Invui, T. & Kamon, M. (2010). Zero Valent Iron to Remove The Arsenic Contamination from Natural Ground Water: Batch and Column Experiment. Proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8-10, 2009. Advances in Environmental Geotechnics, pp 515-520.
  • 2. Bhatnagar, A. & Sillanpaa, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168, 2, pp. 493-504, DOI: 10.1016/j.cej.2011.01.103.
  • 3. Chen, S. Nguyen, N. Chen, Y.& Li, C. (2013). Coagulation enhacement of nonylphenol ethoxylate by partial oxidation using zero-valent iron/ hydrogen peroxide, Desalination and Water Treatment, 51, 7-9, pp 1590-1595, DOI: 10.1080/19443994.2012.699232.
  • 4. Cundy, A., Hopkinson, L. & Whitby, R. (2008). Use of Iron-Based Technologies in Contaminated Land and Groundwater Remediation: A Review, Science of the Total Environment, 400, pp. 42-51, DOI: 10.1016/j.scitotenv.2008.07.002.
  • 5. Dahab, M.F. (1991) Nitrate Treatment Methods: An overview, (https://link.springer.com/chapter/10.1007/978-3-642-76040-2_26 https://doi.org/10.1007/978-3-642-76040-2_26
  • 6. Della Rocca, C. Belgiorno, V. & Meriç, S. (2007). Overview of in-situ applicable nitrate removal processes. Desalination, 11, pp 46-62, DOI: 10.1016/j.desal.2006.04.023.
  • 7. Fu, F. Dionysiou, D.D. & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, pp. 194-205, DOI: 10.1016/j.jhazmat.2013.12.062.
  • 8. Gross, H. Schnoor, G. & Treuter, K. (1986). Nitrate removal from groundwater by autotrophic microorganisms. Water Supply, 11, pp 11-21.
  • 9. Hu, R. Gwenzi, W. Sipowo-Tala, V.& Noubactep, C. (2019). Water Treatment using metallic iron: a tutorial review, Processes, 7, 9, pp 622, https://doi.org/10.3390/pr7090622
  • 10. Kishimoto, N Shiori, I. & Narazaki Y. (2011). Mechanistic Consideration of Zinc Ion Removal by Zero-Valent Iron, Water, Air, & Soil Pollution, 221, 1-4, pp 183-189, DOI: 10.1007/s11270-011-0781-1.
  • 11. Lai, P. Zhao, H. Wang C.& Ni, J. (2007). Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, Journal of Hazardous Materials, 147, 1-2, pp 232-239, DOI: 10.1016/j.jhazmat.2006.12.075.
  • 12. Liao, C.H. Kang, S.F. & Hsu, Y. W. (2003). Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research, 37, pp 4109-4118, DOI: 10.1016/S0043-1354(03)00248-3.
  • 13. Lichtwardt, M. & Hart, B. (2010). Book of Biological Nitrate Removal Pretreatment for a Drinking Water Application. Water Research Foundation, Denver, 2010.
  • 14. Liu, H. Chen, Z. Guan, Y. & Xu, S. (2018). Role and application of iron in water treatment for nitrogen removal: A review. Chemosphere, 204, 51-62, https://doi.org/10.1016/j.chemosphere.2018.04.019.
  • 15. Liu, P. (2016). Novel chemical and biological pre-treatments to improve water quality in drinking water treatment, Master thesis, University of Queensland, Australia 2016.
  • 16. Liu, Y. & Wang, J. (2019). Reduction of nitrate by zerovalent iron (ZVI) based materials: a review, Science of the Total Environment, 671, pp 388-403, DOI: org/10.1016/j.scitotenv.2019.03.317.
  • 17. Makota, S. Nde-Tchoupe, A.I. Mwakabona, H.T. Tepong-Tsindé, R. Noubactep, C. Nassi, A. & Njau, K.N. (2017) Metallic iron for water treatment: Leaving the valley of confusion. Applied Water Science, 7, 4177-4196, https://doi.org/10.1007/s13201-017-0601-x
  • 18. Mirvish, S.S. (1975). Formation of N-nitroso compounds: chemistry, kinetics, and in vivo occurrence. Toxicology Applied Pharmacology, 11, pp 325-351, DOI: 10.1016/0041-008X(75)90255-0.
  • 19. Mwakabona, H.T. Ndé-Tchoupé, A.I. Njau, K.N. Noubactep, C. & Wydra, K.D. (2017): Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Research, 117, 127-142, DOI: 10.1016/j.watres.2017.03.001.
  • 20. O’Carroll, D. Sleep, B., Krol, M. Boparai, H. & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, pp. 104-122, DOI: 10.1016/j.advwatres.2012.02.005.
  • 21. Park, H. Yeon, K. Park Y., Lee S., Lee S., Choi Y. & Chung Y. (2008). Reduction of nitrate by nanoscale zero - valent iron supported on mesoporous silica beads, Journal of Water and Environment Technology, 6, 1, pp 35-42.
  • 22. Ratnayaka, D. (2009). Aluminium sulphate. Storage, clarification and chemical treatment, Water Supply https://www.sciencedirect.com/topics/engineering/aluminium-sulphate.
  • 23. Rogalla, F. Ravarini, P. De Larminat, G. & Couttelle, J. (1990) Large-scale biological nitrate and ammonia removal. Water and Environmental Journal, 11, pp 311-401, DOI: 10.1111/j.1747-6593.1990.tb01396.x.
  • 24. Ruangchainikom, C. Liao, C.H. Anotai, J. & Lee, M.T. (2006). Effects of water characteristics on nitrate reduction by the Fe0/CO2 process. Chemosphere, 63, pp 335-343, DOI: 10.1016/j.chemosphere.2005.06.049.
  • 25. Standard methods for the examination of water and wastewater, 2017 (www.standardmethods.org).
  • 26. Sun, Y. Li, J. Huang, T. & Guan, X. (2016) The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Research, 100, pp 277-295, DOI: 10.1016/j.watres.2016.05.031.
  • 27. Tratnyek, P.G. Johnson, R.L. Lowry, G.V. & Brown, R.A. (2014). In situ chemical reduction for source remediation. In Chlorinated Solvent Source Zone Remediation, pp 307-351. Springer New York, DOI: 10.1007/978-1-4614-6922-3_10.
  • 28. van der Hoek, J.P. & Klapwijk, A. (1987) Nitrate removal from ground water. Water Research, 11 pp 989-997, DOI: 10.1016/S0043-1354(87)80018-0.
  • 29. Yargeau, V. (2012). Water and wastewater treatment: chemical processes, in: Metropolitan Sustainability, https://www.sciencedirect.com/topics/engineering/chemical-coagulation
  • 30. Zhao, Y. Feng, C. Wang, Q. Yang, Y. Zhang, Z. & Sugiura N. (2011). Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. Journal of Hazardous Materials,. 11, pp 1033-1039, DOI: 10.1016/j.jhazmat.2011.06.008.
  • 31. Zhou, W. Sun, Y. Wu, B. Zhang, Y. Huang, M. Miyanaga, T. & Zhang, Z. (2011). Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. Journal Environmental Science, 11, pp 1761-1769, DOI: 10.1016/S1001-0742(10)60635-3.
  • 32. Zhu, I. & Getting, T. (2012). A review of nitrate reduction using inorganic materials, Environmental Technology Reviews, (https://www.tandfonline.com/doi/full/10.1080/09593330.2012.706646?src=recsy)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f31e3ae5-d03a-4894-8e49-a99d8cba97de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.