PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The membrane with polylactide and hyaluronic fibers for skin substitute

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Skin substitutes are heterogeneous group of scaffolds (natural or synthetic) and cells. We hypothesize that nanofibers with layer composition made of polylactide (PLA) and sodium hyaluronate (HA) obtained using electrospinning method are a good matrix for cell adhesion and proliferation. Methods: Optimal conditions of electrospinning of PLA and HA nanofibers to create layered compositions (PLA membrane covered with HA nonwovens) were determined by modifying parameters such as the appropriate amount of solvents, polymer concentration, mixing temperature and electrospinning process conditions. By changing the parameters, it was possible to control the diameter and properties of both polymer fibers. The spinning solution were characterized by surface tension and rheology. A scanning electron microscope (SEM) was used to determine the morphology and fiber diameters: PLA and HA. Structure of the PLA/HA nonwoven was analyzed using spectroscopy (FTIR/ATR). Biocompatibility of the nonwoven with fibroblasts (ECM producers) was assessed in the in vitro conditions. Results: The results showed that stable conditions for the formation of submicron PLA fibers were obtained using a 13% wt. solution of the polymer, dissolved in a 3:1 mixture of DCM:DMF at 45 °C. The hyaluronic fibers were prepared from a 12% wt. solution of the polymer dissolved in a 2:1 mixture of ammonia water and ethyl alcohol. All materials were biocompatible but to a different degree. Conclusions: The proposed laminate scaffold was characterized by a hydrophobic-hydrophilic domain surface with a maintained fiber size of both layers. The material positively underwent biocompatibility testing in contact with fibroblasts.
Rocznik
Strony
91--99
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
  • The Jagiellonian University, Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Krakow, Poland
  • The Jagiellonian University, Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Krakow, Poland
  • Academy of Physical Education, Department of Physiotherapy, Section of Anatomy, Krakow, Poland
autor
  • Academy of Physical Education, Department of Physiotherapy, Section of Anatomy, Krakow, Poland
  • Academy of Physical Education, Department of Physiotherapy, Section of Anatomy, Krakow, Poland
Bibliografia
  • [1] BELLO Y.M., FALABELLA A.F., EAGLSTEIN W.H., Tissueengineered skin. Current status in wound healing, Am. J. Clin. Dermatol., 2001, 2, 305–313.
  • [2] BRENNER E.K., SCHIFFMAN J.D., THOMPSON E.A., TOTH L.J., SCHAUER C.L., Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions, Carbohyd. Polym., 2012, 87(1), 926–929.
  • [3] CHEN G., LV Y., Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering, Curr. Pharm. Des., 2015, 21(15), 1967–1978.
  • [4] CHUN-HSU Y., JEN-YU Y., YUEH-SHENG C., MING-HSIEN L., CHIUHG-HUA H., Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model, J. Tissue Eng. Regen. M., 2017, 11, 911–914.
  • [5] DE MEL A., SEIFALIAN A.M., BIRCHALL M.A., Orchestrating cell/material interactions for tissue engineering of surgical implants, Macromol. Biosci., 2012, 12, 1010–1021.
  • [6] DONG Y., LIAO S., NGIAM M., CHAN C.K., RAMAKRISHNA S., Degradation Behaviors of Electrospun Resorbable Polyester Nanofibers, Tissue Eng. Part B: Reviews, 2009, 15(3), 333–351.
  • [7] FATHI-AZARBAYJANI A., QUN L., CHAN Y., CHAN S., Novel Vitamin and Gold-Loaded Nanofiber Facial Mask for Topical Delivery, AAPS Pharm. Sci. Tech., 2010, 11, 1169–1170.
  • [8] FINNE-WISTRAND A., ALBERTSSON A.C., KWON O.H., KAWAZOE N., CHEN G., KANG I.K., HASUDA H., GONG J., ITO Y., Resorbable scaffolds from three different techniques: electrospun fabrics, salt-leaching porous films, and smooth flat surfaces, Macromol. Biosci., 2008, 8(10), 951-959.
  • [9] FISCHER R.L., MCCOY M.G., GRANT S.A., Electrospinning collagen and hyaluronic acid nanofiber meshes, J. Mater. Sci.: Mater. Med., 2012, 23(7), 1645–1654.
  • [10] HALIM A.S., KHOO T.L., MOHD YUSSOF S.J., Biologic and synthetic skin substitutes: An overview, Indian J. Plast. Surg., 2010, 43, 23–28.
  • [11] HUIJUN L., ZHANGQI F., ZHONGZE G., CHANGJIAN L., Growth of outgrowth endothelial cells on aligned PLLA nanofibrous scaffolds, J. Mater. Sci.: Mater. Med., 2009, 20, 1937–1944.
  • [12] LYU S., HUANG C., YANG H., ZHANG X., Electrospun Fibers as a Scaffolding Platform for Bone Tissue Repair, J. Orthop. Res., 2013, 31(9), 1382–1389.
  • [13] MARTINS A., REIS L., NEVES N.M., Electrospinning: processing technique for tissue engineering scaffolding, Int. Mater. Rev., 2008, 53, 257–274.
  • [14] MENASZEK E., STODOLAK-ZYCH E., BOGUŃ M., Hyaluronic electrospun membranes as active scaffolds for bone and cartilage tissue, Eng. Biomat., 2016, 138, 93–94.
  • [15] MENON S.N., FLEGG J.A., MCCUE S.W., SCHUGART R.C., DAWSON R.A., MCELWAIN D.L.S., Modelling the interaction of keratinocytes and fibroblasts during normal and abnormal wound healing processes, Proc. Biol. Sci., 2012, 279(1741), 3329–3338.
  • [16] PABJAŃCZYK-WLAZŁO E., KRUCIŃSKA I., CHRZANOWSKI M., SZPARAGA G., CHEBERSKA A., KOLESIŃSKA B., KOMISARCZYK A., BOGUŃ M., Fabrication of Pure Electrospun Materials from Hyaluronic Acid, Fibres Text. East. Eur., 2017, 3(123), 45–52.
  • [17] STODOLAK E., PALUSZKIEWICZ C., BŁAŻEWICZ M., KOTELA I., In vitro biofilms formation on polymer matrix composites, J. Mol. Struct., 2009, 924–926, 562–566.
  • [18] STODOLAK E., PALUSZKIEWICZ C., BOGUŃ M., BŁAŻEWICZ M., Nanocomposite fibres for medical applications, J. Mol. Struct., 2009, 924–926, 208–213.
  • [19] STODOLAK-ZYCH E., MENASZK E., SZATKOWSKI P., MUCHA A., BŁAŻEWICZ M., Carbon nanofibers (CNF) as scaffolds for osteochondral tissue regenerative medicine, Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress, DOI: 10.3389/conf.FBIOE.2016.01.02830.
  • [20] VIG K., CHAUDHARI A., TRIPATHI S., DIXIT S., SAHU R., PILLAI S., DENNIS V.A., SINGH S.R., Advances in Skin Regeneration Using Tissue Engineering, Int. J. Mol. Sci., 2017, 18(4), 789–808.
  • [21] WANG X., DING B., LI B., Review Biomimetic electrospun nanofibrous structures for tissue engineering, Mater. Today, 2013, 16(6), 229–241.
  • [22] WILK-JĘDRUSIK M., Kwas hialuronowy w dermatologii estetycznej i kosmetologii: intradermoterapia, suplementacja doustna oraz aplikacja zewnętrzna, Dissertation, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, 2013.
  • [23] YOUNG D.S., Hyaluronic acid-based nanofibers via electrospinning, Master of Science Thesis, North Carolina State University, Raleigh, 2006.
  • [24] ZHANG K., FAN L., YAN Z., YU Q., MO X., Electrospun Biomimic Nanofibrous Scaffolds of Silk Fibroin/Hyaluronic Acid for Tissue Engineering, J. Biomater. Sci., Polym. Ed., 2012, 23(9), 1185–1198.
  • [25] ZHAO J., CAO Y., DIPIETRO L.A., LIANG J., Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization, J. R. Soc. Interface, 2017, DOI: 10.1098/rsif.2016.0959.
Uwagi
This study was performed within the framework of funding for statutory activities of AGH University of Science and Technology in Krakow, Faculty of Materials Science and Ceramics (11.11.160.182). The biological studies were co-funded by the National Science Centre of Poland (grant No. 2014/15/B/NZ6/02519).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f310d213-bf8d-4da8-b7ab-cbcedbec037c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.