PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polihistydylowe sekwencje z motywem His-tag – ich rola i biologiczne znaczenie oddziaływania z jonami metali

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Polyhistidine sequences with His-tag motif – their role and biological significance of interaction with metal ions
Języki publikacji
PL
Abstrakty
EN
His-tags are specific sequences containing six to nine subsequent histydyl residues and they are used commercially in immobilized metal affinity chromatography (IMAC) as molecular ‘anchors’ that bind to a metal ion (usually nickel), immobilized by chelation with nitrilotriacetic acid (NTA) bound to a solid support [37, 38]. Consecutive histidines are the common denominator for both His-tags used in molecular biology and for quite remote biological phenomena – more than 2000 histidine- rich proteins (HRPs) are found in microorganisms including 60% and 82% of archaeal and bacterial species, respectively and their roles are not well characterized [73]. The physicochemical properties of histidine make it a versatile amino acid that influences protein conformation and enzymatic activity [15]. Many natural proteins with a His-tag domain are assigned to different functions, for example: most bacterial proteins, containing this motif are probably involved in the homeostasis of nickel ions [68, 76], while others, e.g. newly isolated peptides from the venom of the snake genus Atheris contain poly-histidyl-poly-glycyl sequences (pHpG) can act on the cardiovascular system by inhibiting snake venom metalloproteinases and affect its function by acting on specific receptors [58, 62]. His-rich motifs have been found also e.g. in Zn2+ transporters, prion proteins, His-rich glycoproteins, transcription factors or numerous copper-binding proteins [56, 67, 84]. Binding mode and the thermodynamic properties of the system depends on the specific metal ion and the histidine sequence. Despite the wide application of the His-tag for purification of proteins, little is known about the properties of metalbinding to such tag domain. Recent experimental and theoretical studies have shown that metal ions, e.g. Cu2+ can bind to various sets of imidazoles depending on the number of histidine residues that are located in His-rich sequences. The occurrence of polymorphic binding states and the formation of an α-helical structure induced by metal ion coordination suggest that proteins with a His-tag domain may serve as the dynamic site able to ‘move’ metal ions along the tag sequence [99, 100]. This might explain the frequent occurrence of such sequences in bacterial Ni2+ chaperones, which transfer the metal ion between different proteins.
Słowa kluczowe
Rocznik
Strony
1--24
Opis fizyczny
Bibliogr. 101 poz., schem., tab., wykr.
Twórcy
autor
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] R.F. Doolittle, Redundancies in protein sequences [w:] Prediction of protein structure and the principles of protein conformation, G.D. Fasman ed, Plenum Press, New York 1989.
  • [2] J.M. Hancock, M. Simon, Gene, 2005, 345, 113.
  • [3] N.G. Faux, S.P. Bottomley, A.M. Lesk, J.A. Irving; J.R. Morrison, M.C. de la Banda, J.C. Whisstock, Genome Res., 2005, 15, 537.
  • [4] N.G. Faux, G.A. Huttley, K. Mahmood, G.I. Webb, M.G. de la Banda, J.C. Whisstock, Genome Res., 2007, 17, 1118.
  • [5] M.V. Katti, R. Sami-Subbu, P.K. Ranjekar, V.S. Gupta, Protein Sci., 2000, 9, 1203.
  • [6] H. Lavoie, F. Debeane, Q.D. Trinh, , J.F. Turcotte, L.P. Corbeil-Girard, M.J. Dicaire, A. Saint-Denis, M. Page, G.A. Rouleau, B. Brais, Hum. Mol. Genet., 2003, 12, 2967.
  • [7] M.F. Perutz, A.H. Windle, Nature, 2001, 412, 143.
  • [8] C.A. Ross, R.L. Margolis, M.W. Becher, J.D. Wood, S. Engelender, J.K. Cooper, A.H. Sharp, Neuronal Degeneration and Regeneration: from Basic Mechanisms to Prospects for Therapy, 1998, 117, 397.
  • [9] S.L. Hands, A. Wyttenbach, Acta Neuropathol., 2010, 120, 419.
  • [10] R.L. Margolis, C.A. Ross, Trends Mol. Med., 2001, 7, 479.
  • [11] H.T. Orr, H.Y. Zoghbi, Annual Review of Neuroscience, 2007, 30, 575.
  • [12] I.A. Klement, P.J. Skinner, M.D. Kaytor, H. Yi, S.M. Hersch, H.B. Clark, H.Y. Zoghbi, H.T. Orr, Cell, 1998, 95, 41.
  • [13] R. Truant, B.R. Cullen, Mol. Cell. Biol., 1999, 19, 1210.
  • [14] T. Cheng, W. Xia, P. Wang, F. Huang, J. Wang, H. Sun, Metallomics, 2013, 5, 1423.
  • [15] S.M. Liao, Q.S. Du, J.Z. Meng, Z.W. Pang, R.B. Huang, Chem. Centr. J., 2013, 7, 12.
  • [16] J.T. Rubino, K.J. Franz, J. Inorg. Biochem., 2012, 107, 129.
  • [17] R.J. Sundberg, R.B. Martin, Chem. Rev., 1974, 74, 471.
  • [18] K. Fink, J. Boratynski, Postępy Higieny i Medycyny Doświadczalnej, 2014, 68, 1276.
  • [19] S. Grimme, Angew. Chem. Int. Edit., 2008, 47, 3430.
  • [20] G.B. McGaughey, M. Gagne, A.K. Rappe, J. Biol. Chem., 1998, 273, 15458.
  • [21] G.L. Miessler, D.A. Tarr, Inorganic Chemistry, Wyd. 3, Upper Saddle River, NJ: Pearson Prentice Hall, 2003.
  • [22] M. Orfei, M.C. Alcaro, G. Marcon, M. Chelli, M. Ginanneschi, H. Kozlowski, J. Brasun, L. Messori, J. Inorg. Biochem., 2003, 97, 299.
  • [23] C. Conato, R. Gavioli, R. Guerrini, H. Kozlowski, P. Mlynarz, C. Pasti, F. Pulidori, M. Remelli, BBA-Gen. Subjects, 2001, 1526, 199.
  • [24] T. Kowalik-Jankowska, M. Ruta-Dolejsz, K. Wisniewska, L. Lankiewicz, J. Inorg. Biochem., 2002, 92, 1.
  • [25] B. Boka, A. Myari, I. Sovago, N. Hadjiliadis, J. Inorg. Biochem., 2004, 98, 113.
  • [26] C.E. Livera, L.D. Pettit, M. Bataille, B. Perly, H. Kozlowski, B. Radomska, J. Chem. Soc. Dalton Trans., 1987, 3, 661.
  • [27] I. Sovago, E. Farkas, C. Bertalan, A. Lebkiri, T. Kowalik-Jankowska, H. Kozlowski, J. Inorg. Biochem., 1993, 51, 715.
  • [28] C. Conato, W. Kamysz, H. Kozlowski, M. Luczkowski, Z. Mackiewicz, F. Mancini, P. Mlynarz, M. Remelli, D. Valensin, G. Valensin, Eur. J. Inorg.c Chem., 2003, 9, 1694.
  • [29] F. Carrera, E.S. Marcos, P.J. Merkling, J. Chaboy, A. Munoz-Paez, Inorg. Chem., 2004, 43, 6674.
  • [30] J.A. Tainer, E.D. Getzoff, K.M. Beem, J.S. Richardson, D.C. Richardson, Journal of Molecular Biology, 1982, 160, 181.
  • [31] P.J. Hart, M.M. Balbirnie, N.L. Ogihara, A.M. Nersissian, M.S. Weiss, J.S. Valentine, D. Eisenberg, Biochemistry, 1999, 38, 2167.
  • [32] M. Rowinska-Zyrek, D. Witkowska, S. Potocki, M. Remelli, H. Kozlowski, New J. Chem., 2013, 37, 58.
  • [33] P. Kolkowska, A. Hecel, D. Kędzierska, M. Ostrowska, P.K. Walencik, J. Wątły, K. Zdyb, M. Spodzieja, S. Rodziewicz-Motowidło, S. Potocki, M. Łuczkowski, E. Gumienna-Kontecka, M. Rowińska-Żyrek, J. Inorg. Biochem. 2016, 163, 258.
  • [34] H. Kozlowski, T. Kowalik-Jankowska, M. Jezowska-Bojczuk, Coord. Chem. Rev. 2005, 249, 2323.
  • [35] C. Harford, B. Sarkar, Accounts Chem. Res., 1997, 30, 123.
  • [36] H. Block, B. Maertens, A. Spriestersbach, N. Brinker, J. Kubicek, R. Fabis, J. Labahn, F. Schaefer, Guide to Protein Purification, Second Edition, 2009, 463, 439.
  • [37] S. Knecht, D. Ricklin, A.N. Eberle, B. Ernst, J. Mol. Recogn., 2009, 22, 270.
  • [38] J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Nature, 1975, 258, 598.
  • [39] E. Hochuli, H. Dobeli, A. Schacher, J. Chromatography, 1987, 411, 177.
  • [40] E. Hochuli, W. Bannwarth, H. Dobeli, R. Gentz, D. Stuber, Bio-Technology, 1988, 6, 1321.
  • [41] F.H. Arnold, Bio-Technology, 1991, 9, 151.
  • [42] H.L. Liu, Y. Ho, C.M. Hsu, J. Biomol.Struct. Dynam., 2003, 21, 31.
  • [43] C.W. Chen, H.L. Liu, J.C. Lin, Y. Ho, J. Chinese Chem. Soc., 2005, 52, 1281.
  • [44] F.G. Oppenheim, T. Xu, F.M. McMillian, S.M. Levitz, R.D. Diamond, G.D. Offner, R.F. Troxler, J. Biol. Chem., 1988, 263, 7472.
  • [45] M.J. Oudhoff, J.G.M. Bolscher, K. Nazmi, H. Kalay, W. van’t Hof, A.V.N. Amerongen, E.C.I. Veerman, Faseb J., 2008, 22, 3805.
  • [46] K. Kavanagh, S. Dowd, J. Pharm. Pharmacol., 2004, 56, 285.
  • [47] S.R. Hawley, P.G. Bray, M. Mungthin, J.D. Atkinson, P.M. O’Neill, S.A. Ward, Antimicrob. Agents Chemother., 1998, 42, 682.
  • [48] A. Lynn, S. Chandra, P. Malhotra, V.S. Chauhan, Febs Lett., 1999, 459, 267.
  • [49] D.J. Sullivan, I.Y. Gluzman, D.E. Goldberg, Science, 1996, 271, 219.
  • [50] H. Kozlowski, S. Potocki, M. Remelli, M. Rowinska-Zyrek, D. Valensin, Coord. Chem. Rev., 2013, 257, 2625.
  • [51] K. De Pina, V. Desjardin, M.A. Mandrand-Berthelot, G. Giordano, L.F. Wu, Journal of Bacteriology, 1999, 181, 670.
  • [52] V.A. Campos-Bermudez, N.R. Leite, R. Krog, A.J. Costa-Filho, F.C. Soncini, G. Oliva, A.J. Vila, Biochemistry, 2007, 46, 11069.
  • [53] H. Reyes-Caballero, A.J. Guerra, F.E. Jacobsen, K.M. Kazmierczak, D. Cowart, U.M.K. Koppolu, R.A. Scott, M.E. Winkler, D.P. Giedroc, J. Mol. Biology, 2010, 403, 197.
  • [54] M.M. Pearson, M. Sebaihia, C. Churcher, M.A. Quail, A.S. Seshasayee, N.M. Luscombe, Z. Abdellah, C. Arrosmith, B. Atkin, T. Chillingworth, H. Hauser, K. Jagels, S. Moule, K. Mungall, H. Norbertczak, E. Rabbinowitsch, D. Walker, S. Whithead, N.R. Thomson, P.N. Rather, J. Parkhill, H.L.T. Mobley, J. Bacteriol., 2008, 190, 4027.
  • [55] M. Kawachi, Y. Kobae, T. Mimura, M. Maeshima, J. Biol. Chem., 2008, 283, 8374.
  • [56] M.S. Abrahamsen, T.J. Templeton, S. Enomoto, J.E. Abrahante, G. Zhu, C.A. Lancto, M.Q. Deng, C. Liu, G. Widmer, S. Tzipori, G.A. Buck, P. Xu, A.T. Bankier, P.H. Dear, B.A. Konfortov, H.F. Spriggs, L. Iyer, V. Anantharaman, L. Aravind, V. Kapur, Science, 2004, 304, 441.
  • [57] S. Yamashita, C. Miyagi, T. Fukada, N. Kagara, Y.S. Che, T. Hirano, Nature, 2004, 429, 298.
  • [58] S.C. Wagstaff, P. Favreau, O. Cheneval, G.D. Laing, M.C. Wilkinson, R.L. Miller, R. Stoecklin, R.A. Harrison, Biochem. Biophys. Res.Commun., 2008, 365, 650.
  • [59] C.L. Fu, R.J. Maier, BBA-Bioenergetics, 1994, 1184, 135.
  • [60] J.V. Gilbert, J. Ramakrishna, F.W. Sunderman, A. Wright, A.G. Plaut, Infect. Immun., 1995, 63, 2682.
  • [61] Z.Y. Zhang, S.Z. Li, H.H. Zhang, Q.R. Wu, J. Gong, T. Liang, L. Gao, N.N. Xing, W.B. Liu, R.L. Du, X.D. Zhang, Mol. Cell. Biology, 2015, 35, 778.
  • [62] P. Favreau, O. Cheneval, L. Menin, S. Michalet, H. Gaertner, F. Principaud, R. Thai, A. Menez, P. Bulet, R. Stocklin, Rapid Commun. Mass Sp., 2007, 21, 406.
  • [63] S. Guida, F. Trettel, S. Pagnutti, E. Mantuano, A. Tottene, L. Veneziano, T. Fellin, M. Spadaro, K.A. Stauderman, M.E. Williams, S. Volsen, R.A. Ophoff, R.R. Frants, C. Jodice, M. Frontali, D. Pietrobon, Am. J. Human Gen., 2001, 68, 759.
  • [64] Q. Yue, J.C. Jen, S.F. Nelson, R.W. Baloh, Am. J. Human Gen., 1997, 61, 1078.
  • [65] Y.S. Hong, S.Y. Kim, A. Bhattacharya, D.R. Pratt, W.K. Hong, M.A. Tainsky, Gene, 1995, 159, 209.
  • [66] S. Gordon, G. Akopyan, H. Garban, B. Bonavida, Oncogene, 2006, 25, 1125.
  • [67] M. Zimmermann, O. Clarke, J.M. Gulbis, D.W. Keizer, R.S. Jarvis, C.S. Cobbett, M.G. Hinds, Z. Xiao, A.G. Wedd, Biochemistry, 2009, 48, 11640.
  • [68] S. Seshadri, S.L. Benoit, R.J. Maier, J. Bacteriol., 2007, 189, 4120.
  • [69] M. Soundararajan, A.K. Roos, P. Savitsky, P. Filippakopoulos, A.N. Kettenbach, J.V. Olsen, S.A. Gerber, J. Eswaran, S. Knapp, J.M. Elkins, Structure, 2013, 21, 986.
  • [70] M.J. McConnell, L. Actis, J. Pachon, Fems Microbiol. Rev., 2013, 37, 130.
  • [71] R.G. Ge, Y. Zhang, X.S. Sun, R.M. Watt, Q.Y. He, J.D. Huang, D.E. Wilcox, H.Z. Sun, J. Am. Chem. Soc., 2006, 128, 11330.
  • [72] D. Witkowska, S. Bielinska, W. Kamysz, H. Kozlowski, J. Inorg. Biochem., 2011, 105, 208.
  • [73] D. Witkowska, R. Politano, M. Rowinska-Zyrek, R. Guerrini, M. Remelli, H. Kozlowski, Chem--Eur. J., 2012, 18, 11088.
  • [74] M. Rowinska-Zyrek, D. Witkowska, S. Bielinska, W. Kamysz, H. Kozlowski, Dalton Trans., 2011, 40, 5604.
  • [75] J.F. Tomb, O. White, A.R. Kerlavage, R.A. Clayton, G.G. Sutton, R.D. Fleischmann, K.A. Ketchum, H.P. Klenk, S. Gill, B.A. Dougherty, K. Nelson, J. Quackenbush, L.X. Zhou, E.F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H.G. Khalak, A. Glodek, K. McKenney, L.M. Fitzegerald, N. Lee, M.D. Adams, E.K. Hickey, D.E. Berg, J.D. Gocayne, T.R. Utterback, J.D. Peterson, J.M. Kelley, M.D. Cotton, J.M. Weldman, C. Fujii, C. Bowman, L. Watthey, E. Wallin, W.S. Hayes, J.M. Weidman, M. Borodovsky, P.D. Karp, H.O. Smith, C.M. Fraser, J.C. Venter, Nature, 1997, 388, 539.
  • [76] Y.B. Zeng, D.M. Zhang, H.Y. Li, H.Z. Sun, J. Biol. Inorg. Chem., 2008, 13, 1121.
  • [77] A. Kadioglu, J.N. Weiser, J.C. Paton, P.W. Andrew, Nat. Rev. Microbiol., 2008, 6, 288.
  • [78] S. Shafeeq, T.G. Kloosterman, O.P. Kuipers, Metallomics, 2011, 3, 609.
  • [79] A.J. Guerra, C.E. Dann, D.P. Giedroc, J. Am. Chem. Soc., 2011, 133, 19614.
  • [80] D. Hussain, M.J. Haydon, Y. Wang, E. Wong, S.M. Sherson, J. Young, J. Camakaris, J.F. Harper, C.S. Cobbett, Plant Cell, 2004, 16, 1327.
  • [81] F. Verret, A. Gravot, P. Auroy, S. Preveral, C. Forestier, A. Vavasseur, P. Richaud, Febs Lett., 2005, 579, 1515.
  • [82] M. Migocka, A. Kosieradzka, A. Papierniak, E. Maciaszczyk-Dziubinska, E. Posyniak, A. Garbiec, S. Filleur, J. Exp. Bot., 2015, 66, 1001.
  • [83] Y. Kobae, T. Uemura, M.H. Sato, M. Ohnishi, T. Mimura, T. Nakagawa, M. Maeshima, Plant Cell Physiol., 2004, 45, 1749.
  • [84] E. Salichs, A. Ledda, L. Mularoni, M.M. Alba, S. de la Luna, Plos Genet., 2009, 5, 18.
  • [85] L. Trynda-Lemiesz, H. Kozlowski, N. Katsaros, Metal-based drugs, 2000, 7, 293.
  • [86] A. Dobosz, I.O. Fritsky, A. Karaczyn, H. Kozlowski, T.Y. Silva, J. Swiatek-Kozlowska, J. Chem. Soc. Dalton, 1998, 1089.
  • [87] A.M. Moreeuw, P. Decock, H. Timmerman, H. Kozlowski, J. Inorg. Biochem., 1998, 70, 107.
  • [88] B.G. Fry, K. Roelants, D.E. Champagne, H. Scheib, J.D.A. Tyndall, G.F. King, T.J. Nevalainen, J.A. Norman, R.J. Lewis, R.S. Norton, C. Renjifo, R.C.R. de la Vega, R.C.R. Ann. Rev. Genom. Hum. G., 2009, 10, 483.
  • [89] S. Takeda, H. Takeya, S. Iwanaga, BBA-Proteins Proteom., 2012, 1824, 164.
  • [90] J.W. Fox, S.M.T. Serrano, Toxicon, 2005, 45, 969.
  • [91] J.W. Fox, S.M.T. Serrano, Handbook of Venoms and Toxins of Reptiles, CRC Press: Boca Raton, FL, USA 2010.
  • [92] N.R. Casewell, K. Sunagar, Z. Takacs, J.J. Calvete, T.N.W. Jackson, B.G. Fry, Venomous Reptiles and Their Toxins. Evolution, Pathophysiology and Discovery, Oxford University Press: Oxford, UK 2015.
  • [93] W. Bode, F.X. Gomisruth, W. Stockler, Febs Lett., 1993, 331, 134.
  • [94] T.S. Kang, D. Georgieva, N. Genov, M.T. Murakami, M. Sinha, R.P. Kumar, P. Kaur, S. Kumar, S. Dey, S. Sharma, A. Vrielink, C. Betzel, S. Takeda, R.K. Arni, T.P. Singh, R.M. Kini, Febs J., 2011, 278, 4544.
  • [95] A.S. Kamiguti, M. Zuzel, R.D.G. Theakston, Braz. J. Med. Biol. Res., 1998, 31, 853.
  • [96] R. Marques-Porto, I. Lebrun, D.C. Pimenta, Comp. Biochem. Phys. C., 2008, 147, 424.
  • [97] G.V. Odell, E.C. Ferry, L.M. Vick, A.W. Fenton, L.S. Decker, R.L. Cowell, C.L. Ownby, J.M. Gutierrez, Toxicon, 1998, 36, 1801.
  • [98] J.M. Gutierrez, T. Escalante, A. Rucavado, C. Herrera, Toxins, 2016, 8, 4.
  • [99] J. Watly, E. Simonovsky, R. Wieczorek, N. Barbosa, Y. Miller, H. Kozlowski, Inorg. Chem, 2014, 53, 13, 6675.
  • [100] J. Watly, E. Simonovsky, N. Barbosa, M. Spodzieja, R. Wieczorek, S. Rodziewicz-Motowidlo, Y. Miller, H. Kozlowski, Inorg. Chem., 2015, 54, 7692.
  • [101] D. Brasili, J. Watly, E. Simonovsky, R. Guerrini, N.A. Barbosa, R. Wieczorek, M. Remelli, H. Kozlowski, Y. Miller, Dalton Trans., 2016, 45, 5629.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Błędna numeracja stron artykułu (1-25). W spisie treści zeszytu, podane są strony: 697-722.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f30b1a7d-a6cb-4d93-ad34-301a98e3811e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.