PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assessment of the Effect of Sunflower Agrocenosis on the Characteristics of the Structural and Aggregate Composition of Typical Black Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research was conducted on the Bila Tserkva National Agrarian University experimental field on a typical deep, low-humus chernozem. The methods of main cultivation in the sunflower agrocenosis of grain-row crop rotation had a major influence on the soil structuring processes. The use of moldboard and no-moldboard tillage increased the number of the most agronomically beneficial aggregates (0.25–10 mm) in the 0–10 cm soil’s layer at the begining of the sunflower growing season by 6.0% compared to shallow no-moldboardof tillage the soil. By the end of the growing season in the sunflower agrocenosis in the 0–30 cm soil layer, compared to the beginning of the crop growing season, the number of agronomically beneficial aggregates (0.25–10 mm) decreased, the number of fractions larger than 10 mm and fractions smaller than 0.25 mm increased. The coefficient of structure for moldboard and no-moldboard tillage significantly increased compared to shallow no-moldboardof tillage. The use of shallow no-moldboardof tillage and moldboard with no-moldboardof tillage was led to an increase in the content of stable aggregates by 1.2–7.5%. The highest yield of sunflower was recorded for the use of moldboard with no-mold-boardof tillage – 2.72 t/ha, which is significantly higher than other variants. The use of shallow no-moldboardof tillage for 10–12 cm with disc tools led to a notable decrease in productivity compared to the control. Improving the water resistance of soil aggregates during moldboard and no-moldboard tillage and shallow no-moldboardof tillage helps to preserve the soil’s potential fertility.
Rocznik
Strony
153--160
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • Bila Tserkva National Agrarian University, Soborna Sq., 8/1, Bila Tserkva, Kyivska oblast, 09117, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • National Scientific Center “Institute of Agriculture of NAAS”, Kyiv, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, 15 str. Heroiv Oborony, Kyiv, 03041, Ukraine
  • Bila Tserkva National Agrarian University, Soborna Sq., 8/1, Bila Tserkva, Kyivska oblast, 09117, Ukraine
  • Bila Tserkva National Agrarian University, Soborna Sq., 8/1, Bila Tserkva, Kyivska oblast, 09117, Ukraine
redaktor
  • National Scientific Center “Institute of Agriculture of NAAS”, Kyiv, Ukraine
  • National Scientific Center “Institute of Agriculture of NAAS”, Kyiv, Ukraine
  • National Dendrological Park “Sofiyivka” of the National Academy of Sciences of Ukraine, 12a str. Kyivska, Uman, Cherkasy region, 20300, Ukraine
Bibliografia
  • 1. An S., Zheng F., Zhang F., Pelt S.V., Makeschin F. 2008. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena, 75, 248–256. https://doi.org/10.1016/j.catena.2008.07.003
  • 2. Bali R., Pineault J., Chagnon P.L., Hijri M. 2021. Fresh compost tea application does not change rhizosphere soil bacterial community structure and has no effects on soybean growth or yield. Plants, 10, 16–38. https://doi.org/10.3390/plants10081638
  • 3. Bowman G., Hutka J. Particle Size Analysis. 2002. In Soil Physical Measurment and Interpritation for Land Evaluation. CSIRO Publishing. Clayton, Australia, 224–239.
  • 4. Bronick C.J., Lai R. 2015. Soil structure and management: A review. Geoderma, 124, 3–22.
  • 5. Brouder S.M., Gomez-Macpherson H. 2014. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agriculture Ecosystems Environment, 187, 11–32. https://doi.org/10.1016/j.agee.2013.08.010
  • 6. Chivenge P., Vanlauwe B., Gentile R., Six J. 2011a. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology Biochemistry, 43, 657–666. https://doi.org/10.1016/j.soilbio.2010.12.002
  • 7. Chivenge P., Vanlauwe B., Gentile R., Six J. 2011b. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology Biochemistry, 43, 657–666. https://doi.org/10.1016/j.soilbio.2010.12.002
  • 8. Dekemati I., Simon B., Vinogradov S., Birkás M. 2019. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Research, 194, 104334. http://doi.org/10.1016/j.still.2019.104334
  • 9. Díaz-Zorita M., Perfect E., Grove J.H. 2002. Disruptive methods for assessing soil structure. Soil Tillage Research, 64, 3-22. https://doi.org/10.1016/s0167-1987(01)00254-9
  • 10. Glab T., Kulib B. 2008. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Tillage Research, 99, 169–178. https://doi.org/10.1016/j.still.2008.02.004
  • 11. Guo Meimei, Gan Zhu ., Yurii Mishchenko Y., Andrii Butenko A., Vladyslav Kovalenko V., Tetiana Rozhkova, Hongyuan Zhao. 2023b. Highly sensitive electrochemical detection of gallic acid in tea samples by using single-walled carbon nanotubes@silica dioxide nanoparticles decorated electrode. International Journal of Electrochemical Science, 18(10), 100291. doi.org/10.1016/j.ijoes.2023.100291
  • 12. Guo Meimei, Jiale Han, Yurii Mishchenko, Andrii Butenko, Vladyslav Kovalenko, Hongyuan Zhao. 2023a. Fabrication of methyl parathion electrochemical sensor based on β-cyclodextrin decorated single-wall carbon nanotubes. Materials Research Innovations. https://doi.org/10.1080/14328917.2023.2244742
  • 13. Gupta V.V.S.R., Germida J.J. 2015. Soil aggregation: Influence on microbial biomass and implications for biological processes. Soil Biology Biochemistry, 80, 3–9. https://doi.org/10.1016/j.soilbio.2014.09.002
  • 14. Horishko A.I. 1997. Winter wheat in crop rotations of the Dnieper region. Dnipropetrovsk: Polygraphist CJSC, 134. (In Ukrainian)
  • 15. Hryhoriv Y., Butenko A., Masyk I., Onychko T., Davydenko G., Bondarieva L., Hotvianska A., Horbunova K., Yevtushenko Y., Vandyk M. 2023a. Growth and Development of Sweet Corn Plants in the Agro-Ecological Conditions of the Western Region of Ukraine. Ecological Engineering & Environmental Technology, 24(4), 216–222. doi.org/10.12912/27197050/162699
  • 16. Hryhoriv Y., Lyshenko M., Butenko A., Nechyporenko V., Makarova V., Mikulina M., Bahorka M., Tymchuk D.S., Samoshkina I., Torianyk I. 2023b. Competitiveness and Advantages of Camelina sativa on the Market of Oil Crops. Ecological Engineering & Environmental Technology, 24(4), 97–103. doi.org/10.12912/27197050/161956
  • 17. Jin V.L., Wienhold B.J., Mikha M.M., Schmer M.R. 2021a. Cropping System Partially Offsets Tillage-Related Degradation of Soil Organic Carbon and Aggregate Properties in a 30-Yr Rainfed Agroecosystem. Soil Tillage Research, 209, 104968. https://doi.org/10.1016/j.still.2021.104968
  • 18. Karbivska U., Butenko A., Kozak M., Filon V., Bahorka M., Yurchenko N., Pshychenko O., Kyrylchuk K., Kharchenko S., Kovalenko I. 2023. Dynamics of Productivity of Leguminous Plant Groups during Long-Term Use on Different Nutritional Backgrounds. Journal of Ecological Engineering, 24(6), 190–196. https://doi.org/10.12911/22998993/162778
  • 19. Kemper R., Bublitz T., Müller P., Kautz T., Döring T., Athmann M. 2020. Vertical Root Distribution of Different Cover Crops Determined with the Profile Wall Method. Agriculture. https://doi:10.3390/agriculture10110503
  • 20. Kogut B.M., Artemyeva Z.S., Kirillova N.P., Yashin M.A., Soshnikova E.I. 2019. Organic Matter of the Air-Dry and Water-Stable Macroaggregates (2-1 mm) of Haplic Chernozem in Contrasting Variants of Land Use. Eurasian Soil Science, 52, 141–149. https://doi.org/10.1134/s106422931902008x
  • 21. Komissarov M.A., Klik A. 2020. The Impact of No-Till, Conservation, and Conventional Tillage Systems on Erosion and Soil Properties in Lower Austria. Eurasian Soil Science, 53, 503–511. https://doi.org/10.1134/s1064229320040079
  • 22. Lazarev A.P., Abrashesh B.I. 2000. The structural state and density of common chernozem and their influence on wheat yield. Soil Science, 5, 614–618. (in Russian).
  • 23. Lehmann J., Kleber M. 2015. The contentious nature of soil organic matter. Nature, 528, 60–68. https://doi.org/10.1038/nature16069
  • 24. Lys N., Tkachuk N., Butenko A., Kozak M., Polyvanyi A., Kovalenko V., Pylypenko V., Andrukh S., Livoshchenko Y., Livoshchenko L. 2023. Evaluation of the efficiency of energy Populus (poplar) growing technology as an alternative source of energy. Journal of Ecological Engineering, 24(12).
  • 25. Malyarchuk M.P., Granovska L.M., Pisarenko P.V., Tomnytskyi A.V. 2021. Productivity of inter-row crop rotation under different systems of main cultivation and fertilization in the irrigation conditions of southern Ukraine. Bulletin of the Sumy NAU, 4(46), 33–41. https://doi.org/10.32845/agrobio.2021.4.5 (In Ukrainian)
  • 26. Medvedev V.V. 2008. Soil structure (methods, genesis, classification, evolution, geography, monitoring, protection. Kharkiv, 406. (In Ukrainian)
  • 27. Medvedev V.V. 2011. Physical Properties and Spatial Distribution of the Plowpan in Different Arable Soils. Eurasian Soil Science, 44, 1364–1372. https://doi.org/10.1134/s1064229311120088
  • 28. Mishchenko Y., Kovalenko I., Butenko A., Danko Y., Trotsenko V., Masyk I., Stavytskyi A. 2022. Microbiological Activity of Soil Under the Influence of Post–Harvest Siderates. Journal of Ecological Engineering, 23(4), 122–127. https://doi.org/10.12911/22998993/146612
  • 29. Moiseev K.G., Romanov I.A. 2004. Soil aggredate strength as affected by long-term plowing. Eurasian Soil Science, 37(6), 604–607 (In Russian)
  • 30. Moreno F., Pelegrín F., Fernández J.E., Murillo J.M. 1997. Soil Physical Properties, Water Depletion and Crop Development under Traditional and Conservation Tillage in Southern Spain. Soil Tillage Research, 41, 25–42. https://doi.org/10.1016/s0167-1987(96)01083-5
  • 31. Ordóñez Fernández R., González Fernández P., Giráldez Cervera J.V., Perea Torres F. 2007. Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Tillage Research, 94, 47–54. https://doi.org/10.1016/j.still.2006.07.003
  • 32. Orzech K., Załuski D. 2020. Effect of companion crops and crop rotation systems on some chemical properties of soil. Journal of Elementology, 25(3), 931–949. https://doi.org/10.5601/jelem.2020.25.1.1904
  • 33. Papish I. 2022. Black soils on forest-like rocks of the Western Ukrainian region. Lviv: LNU named after Ivan Franko, 326. (In Ukrainian).
  • 34. Pittelkow C.M., Liang X., Linquist B.A., van Groenigen K.J., Lee J., Lundy M.E., van Gestel N., Six J., Venterea R.T., van Kessel C. 2015. Productivity limits and potentials of the principles of conservation agriculture. Nature, 517, 365–368. https://doi.org/10.1038/nature13809
  • 35. Shein E.V., Sakunkonchak T., Milanovskii Y.Y., Khaidapova D.D., Lazarev V.I., Aidiev Y.Y., Kuznetsov Y.Y. 2011. Changes in the Physical Properties of Typical Chernozems of Kursk Oblast under the Conditions of a Long-Term Stationary Experiment. Eurasian Soil Science, 44, 1097. https://doi.org/10.1134/s1064229311100127
  • 36. Six J., Conant R.T., Paul E.A., Paustian K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil, 241, 155–176. https://doi.org/10.1023/a:1016125726789
  • 37. Six J., Paustian K., Elliott E.T., Combrink C. 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate- associated carbon. Soil Science Society of America, 64, 681–689. https://doi.org/10.2136/sssaj2000.642681x
  • 38. Smaga I.S. 2008. Structural and aggregate composition of brownish-podzolic gleyed soils of Precarpathia of various uses. Pedology, 9(1–2), 119–123.
  • 39. Smirnova L.G., Novykh L.L., Pelekhotse E.A. 2006. Physical Properties of Chernozems on Slopes in the Landscape Farming System. Eurasian Soil Science, 39, 278–282. https://doi.org/10.1134/s1064229311120088
  • 40. Suleymanov A., Suleymanov R., Polyakov V., Dorogaya E. and Abakumov E. 2022. Conventional Tillage Effects on the Physico–Chemical Properties and Organic Matter of Chernozems Using 13C-NMR Spectroscopy. Agronomy, 12(11), 2800. https://doi.org/10.3390/agronomy12112800
  • 41. Tagar A.A., Adamowski J., Memon M.S., Minh C.D., Mashori A.S., Soomro A.S., Bhayo W.A. 2020. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Tillage Research, 197, 404–494. https://doi.org/10.1016/j.still.2019.104494
  • 42. Trofimova T.A., Korzhov S.I., Gulevskii V.A., Obraztsov V.N. 2018. Assessing the Degree of Physical Degradation and Suitability of Chernozems for the Minimization of Basic Tillage. Eurasian Soil Science, 51, 1080–1085. https://doi.org/10.1134/s10642293180090120
  • 43. Tsentilo L.V. 2019. Productivity of crop rotation depending on fertilization and tillage. Herald of Agrarian Science of the Black Sea Region, 3, 52–60. https://doi.org/10/31521/2313-092x/2019-3(103). (In Ukrainian).
  • 44. Tsyuk O., Tkachenko M., Butenko A., Mishchenko Y., Kondratiuk I., Litvinov D., Tsiuk Y., Sleptsov Y. 2022. Changes in the nitrogen compound transformation processes of typical chernozem depending on the tillage systems and fertilizers. Agraarteadus, 33(1), 192–198. https://doi.org/10.15159/jas.22.23
  • 45. Tsyuk O.A., Tsentilo L.V., Melnyk V.I. 2018. The structural and aggregate composition of the soil depending on the main cultivation and fertilization. Bioresources and nature management, 10(5–6), 139–145. http://doi.org/10/31548/bio2018.05.017
  • 46. Vadyunina A.F., & Korchagina Z.A. 1986. Methods of studying the physical properties of soils. Agropromizdat, (In Russian).
  • 47. Voitovyk М., Butenko A., Prymak І., Mishchenko Y., Tkachenko M., Tsyuk О., Panchenko О., Sleptsov Y., Kopylova T., Havryliuk O. 2023. Influence of fertilizing and tillage systems on humus content of typical chernozem. Agraarteadus, 34(1), 44–50. https://doi.org/10.15159/jas.23.03.
  • 48. Yunhang Liu, Jiale Han, Yurii Mishchenko, Andrii Butenko, Vladyslav Kovalenko, Hongyuan Zhao. 2023. Facile synthesis of β-cyclodextrin decorated Super P Li carbon black for the electrochemical determination of methyl parathion. Materials Research Innovations. https://doi.org/10.1080/14328917.2023. 2243069
  • 49. Ziru Niu Fangjiao An, Yongzhong Su Tingna Liu, Rong Yang Zeyu Du, Shiyang Chen. 2022. Effect of Long-Term Fertilization on Aggregate Size Distribution and Nutrient Accumulation in Aeolian Sandy Soil. Plants, 11(7), 909. https://doi.org/10.3390/plants11070909
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f304e86b-3f94-4890-9c6a-9b619413fd79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.