PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper explains mechanical synthesis which uses powders or material chunks in order to obtain phases and alloys. It is based on an example of magnesium powders with various additives, such as zinc, calcium and yttrium. Design/methodology/approach: The following experimental techniques were used: X-ray diffraction (XRD) method, scanning electron microscopy (SEM), determining particle size distributions with laser measuring, Vickers microhardness. Findings: The particle-size of a powder and microhardness value depend on the milling time. Research limitations/implications: Magnesium gained its largest application area by creating alloys in combination with other elements. Magnesium alloys used in various industry contain various elements e.g. rare-earth elements (REE). Magnesium alloys are generally made by casting processes. Consequently, the search for new methods of obtaining materials such as mechanical alloying (MA) offers new opportunities. The MA allows for the production of materials with completely new physico-chemical properties. Originality/value: Thanks to powder engineering it is possible to manufacture materials with specific chemical composition. These materials are characterized by very high purity, specified porosity, fine-grain structure, complicated designs. These are impossible to obtain with traditional methods. Moreover it is possible to refine the process even further minimalizing the need for finishing or machining, making the material losses very small or negligible. Furthermore material manufactured in such a way can be thermally or chemically processed without any problems.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Materials Engineering, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Gupta N. M. L. Sharon, Magnesium Alloys, and Magnesium Composites, A John Wiley & Sons, Inc.
  • [2] S. Lesz, J. Kraczla, R. Nowosielski, Structure and compression strength characteristics of the sintered Mg-Zn-Ca-Gd alloy for medical applications, Archievs of Civil and Mechanical Engineering 18/4 (2018) 1288-1299. DOI: https://doi.org/10.1016/j.acme.2018.04.002
  • [3] L.A. Dobrzański, G.E. Totten, M. Bamberger, Magnesium and Its Alloys: Technology and Applications, CRC Press Taylor & Francis Group Boca Raton, 2020.
  • [4] D. Ghosh, R. Carnahan, R. Decker, C. Van Schilt, P. Frederick, N. Bradley, Magnesium Alloys and Their Applications, Deutsche Gesellschaft für Metallkunde, 1992.
  • [5] L.A. Dobrzański, Role of materials design in maintenance engineering in the context of industry 4.0 idea, Journal of Achievements in Materials and Manufacturing Engineering 96/1 (2019) 12-49. DOI:https://doi.org/10.5604/01.3001.0013.7932
  • [6] L.A. Dobrzański, T. Tański, A. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser-surface-treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D.G. Waugh (eds), Laser surface engineering, Processes and applications, Woodhead Publishing Series in Electronic and Optical Materials, Vol. 65, Elsevier, Amsterdam, 2015, 3-32. DOI: https://doi.org/10.1016/B978-1-78242-074-3.00001-5
  • [7] N. Žaludová, Mg-RE Alloys and Their Applications, WDS’05 Proceedings Contribute Paper, 2005, 8-643.
  • [8] D. Liu, D. Yang, X. Li, S. Hu, Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys, Journal of Materials Research and Technology 8/1 (2018) 1538-1549. DOI: https://doi.org/10.1016/j.jmrt.2018.08.003
  • [9] N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, Magnesium alloys as implant materials - Principles of property design for Mg-RE alloys, Acta Biomaterialia 6/5 (2010) 1714-1725. DOI: https://doi.org/10.1016/j.actbio.2009.09.010
  • [10] L-N. Zhang, Z-T. Hou, X. Ye, Z-B. Xu, X-L. Bai, P. Shang, The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants, Frontiers in Materials Science 7/3 (2013) 227-236. DOI: https://doi.org/10.1007/s11706-013-0210-z
  • [11] B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, M. Easton, Strengthening by the percolating intergranular eutectic in an HPDC Mg-Ce alloy, Materials Science and Engineering A 599 (2014) 204-211. DOI: https://doi.org/10.1016/j.msea.2014.01.074
  • [12] Q.A. Li, Q. Zhang, C.Q. Li, Y.G. Wang, Microstructure and mechanical properties of Mg-Y alloys, Materials Research, Trans Tech Publications Ltd, 2011, 5-352. DOI: https://www.scientific.net/AMR.239-242.352
  • [13] Y. Qu, M. Kang, R. Dong, J. Liu, J. Liu, J. Zhao, Evaluation of a new Mg-Zn-Ca-Y alloy for biomedical application, Journal of Materials Science: Materials in Medicine 26 (2015) 16. DOI: https://doi.org/10.1007/s10856-014-5342-x
  • [14] D. Egusa, E. Abe, The structure of long period stacking/order Mg-Zn-RE phases with extended non-stoichiometry ranges, Acta Materialia 60/1 (2012) 166-178. DOI: https://doi.org/10.1016/j.actamat.2011.09.030
  • [15] Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with Long-Period Stacking Ordered structure, Materials Transactions 48/11 (2007) 2986-2992. DOI: https://doi.org/10.2320/matertrans.MER2007142
  • [16] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30/4 (2009) 484-498. DOI: https://doi.org/10.1016/j.biomaterials.2008.10.021
  • [17] M.K. Datta, D-T. Chou, D. Hong, P. Saha, S.J. Chung, B. Lee, Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying, Materials Science and Engineering B 176/20 (2011) 1637-1643. DOI: https://doi.org/10.1016/j.mseb.2011.08.008
  • [18] S. Lesz, M. Kremzer, K. Gołombek, R. Nowosielski, Influence of milling time on amorphization of Mg-Zn-Ca powders synthesized by mechanical alloying technique, Archives of Metallurgy and Materials 63/2 (2018) 839-845. DOI: https://doi.org/10.24425/122413
  • [19] A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, M. Karolus, B. Kotur, Influence of rare earth elements on crystallization of Fe82Nb2B14RE2 (RE=Y, Gd, Tb and Dy) amorphous alloys, Journal of Non-Crystalline Solids 357 (2011) 4-9. DOI: https://doi.org/10.1016/ j.jnoncrysol.2010.10.009
  • [20] L.A. Dobrzański, The significance of the nanostructural components on the properties of the nanoengineering materials, Journal of Achievements in Materials and Manufacturing Engineering 88/2 (2018) 55-85. DOI: https://doi.org/10.5604/01.3001.0012.6150
  • [21] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) 59-85. DOI: https://doi.org/10.5604/01.3001.0014.1525
  • [22] M. Jurczyk, Mechanical alloying, Poznan University of Technology Press, Poznań, 2003 (in Polish).
  • [23] C. Suryanarayana, Mechanical alloying and milling, Progress in Material Science 46/1-2 (2001) 1-184. DOI: https://doi.org/10.1016/S0079-6425(99)00010-9
  • [24] J.F. Wang, Y.Y Wei, S.F. Guo, S. Huang, X.E. Zhou, F.S. Pan, The Y-doped MgZnCa alloys with ultrahigh specific strength and good corrosion resistance in simulated body fluid, Materials Letters 81 (2012) 112-114. DOI: https://doi.org/10.1016/j.matlet.2012.04.130
  • [25] A.T. Olanipekun, N.B. Maledi, P.M. Mashinini, The synergy between powder metallurgy processes and welding of metallic alloy, Powder Metallurgy 63/4 (2020) 254-267. DOI: https://doi.org/10.1080/00325899.2020.1807712
  • [26] Y. Han, D. Zou, Z. Chen, G. Fan, W. Zhang, Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium-high strain rates, Materials Characterization 62/2 (2011) 198-203. DOI: https://doi.org/10.1016/j.matchar.2010.11.013
  • [27] J.M. Dutkiewicz, W. Maziarz, T. Czeppe, L. Lityńska, W.K. Nowacki, S.P. Gadaj, Powder metallurgy technology of NiTi shape memory alloy, European Physical Journal Special Topics 158 (2008) 59-65. DOI: https://doi.org/10.1140/epjst/e2008-00654-6
  • [28] O.D. Neikov, V.G. Gopienko, Production of Magnesium and Magnesium Alloy Powders, Handbook of Non-Ferrous Metal Powders, Elsevier, 2019, 533-547. DOI: https://doi.org/10.1016/B978-0-08-100543-9.00017-8
  • [29] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/ 01.3001.0014.1481
  • [30] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage, Archives of Materials Science and Engineering 102/1 (2020) 13-41. DOI: https://doi.org/10.5604/ 01.3001.0014.1452
  • [31] J.S. Benjamin, T.E. Volin, The mechanism of mechanical alloying, Metallurgical Transactions 5 (1974) 1929-1934. DOI: https://doi.org/10.1007/BF02644161
  • [32] M. Karolus, J. Panek, Nanostructured Ni-Ti alloys obtained by mechanical synthesis and heat treatment, Journal of Alloys and Compounds 658 (2016) 709-715. DOI: http://doi.org/10.1016/j.jallcom.2015.10.286
  • [33] J.B. Fogagnolo, F. Velasco, M. Robert, J. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Materials Science and Engineering A 342/1-2 (2003) 131-143. DOI: https://doi.org/10.1016/S0921-5093(02)00246-0
  • [34] M. Jurczyk, Bionanomaterials for Dental Applications, Pan Stanford Publishing, 2012.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3046bfe-bc38-4129-9e87-7ea120290f43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.