PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis and profitability study of a power unit with an added CO2 capture plant

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Concerns over greenhouse gas emissions are driving a requirement for newly built coal power units to satisfy the so-called “capture ready” conditions. This paper presents the a thermo-economic analysis supplemented by a cost evaluation of a power unit for ultra-supercritical parameters expanded by an amine-based CO2 capture plant. The analysis was performed with the use of an integrated package containing the IPSEpro, MATLAB and Revenue Requirement Method implemented in MOExcel. The 0D model of a post combustion capture installation was developed based on complex CFD calculations of the absorber and stripper. A number of CFD simulations were conducted to create a large database, which was then utilized to develop suitable correlations describing the process Thermodynamic and economic calculations were performed in respect of a power plant coupled with a CO2 separation unit for a varying ratio of amine solvent to the exhaust gas stream (L/G). A local minimum for reboiler heat duty was found for L/G≈3.5 revealing the optimal post combustion capture configuration. It was observed that complementing the power unit with a post-combustion capture (PCC) installation causes a slight increase in the investment costs due to the drop in efficiency, but more important is the rise in total cost due to the investment associated with the CO2 capture plant. It was found that about 14 years is required to compensate the investment cost of the PCC installation.
Rocznik
Strony
276--284
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Institute of Thermal Machinery, Częstochowa University of Technology, al. Armii Krajowej 21, 42-200 Częstochowa, Poland
  • Institute of Thermal Machinery, Częstochowa University of Technology, al. Armii Krajowej 21, 42-200 Częstochowa, Poland
autor
  • Institute of Thermal Machinery, Częstochowa University of Technology, al. Armii Krajowej 21, 42-200 Częstochowa, Poland
autor
  • Institute of Thermal Machinery, Częstochowa University of Technology, al. Armii Krajowej 21, 42-200 Częstochowa, Poland
Bibliografia
  • [1] M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: a state-of-the-art review, Chemical Engineering Research and Design 89 (9) (2011) 1609–1624.
  • [2] D. Y. Leung, G. Caramanna, M. M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renewable and Sustainable Energy Reviews 39 (2014) 426–443.
  • [3] Y. Artanto, J. Jansen, P. Pearson, T. Do, A. Cottrell, E. Meuleman, P. Feron, Performance of mea and amine-blends in the csiro pcc pilot plant at loy yang power in australia, Fuel 101 (2012) 264–275.
  • [4] J. Marion, F. Kluger, M. Sell, A. Skea, Advanced Ultra-Supercritical Steam Power Plants, in: Proc. POWER-GEN Asia KLCC, Kuala Lumpur, Malaysia, 2014.
  • [5] D. Asendrych, P. Niegodajew, S. Drobniak, CFD modelling of CO2 capture in a packed bed by chemical absorption, Chemical and Process Engineering 34 (2) (2013) 269–282.
  • [6] K. Stepczynska, L. Kowalczyk, S. Dykas, W. Elsner, Calculation of a 900 mw conceptual 700/720oc coal-fired power unit with an auxiliary extraction-backpressure turbine, Journal of power technologies 92 (4) (2012) 266.
  • [7] Ł. Kowalczyk, W. Elsner, Comparative analysis of optimisation methods applied to thermal cycle of a coal fired power plant, Archives of Thermodynamics 34 (4) (2013) 175–186.
  • [8] L. Kowalczyk, W. Elsner, P. Niegodajew, The application of non-gradient optimization methods to new concept of power plant, Proc. 6th IC-EpsMsO, Athens, 8-11 July, 2015.
  • [9] A. Aroonwilas, A. Veawab, Integration of CO2 capture unit using single-and blended-amines into supercritical coal-fired power plants: implications for emission and energy management, International Journal of Greenhouse Gas Control 1 (2) (2007) 143–150.
  • [10] U. Desideri, A. Paolucci, Performance modelling of a carbon dioxide removal system for power plants, Energy Conversion and Management 40 (18) (1999) 1899–1915.
  • [11] R.D. Brasington, Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power, MSc thesis, Massachusetts Institute of Technology, 2012.
  • [12] J. Marion, N. Nsakala, C. Bozzuto, G. Liljedahl, M. Palkes, D. Vogel, et al., Engineering feasibility of CO2 capture on an existing US coal-fired power plant, in: 26th Int. Conf. Coal Util. Fuel Syst., Clearwater, Florida, 2001.
  • [13] T. Sanpasertparnich, R. Idem, I. Bolea, P. Tontiwachwuthikul, et al., Integration of post-combustion capture and storage into a pulverized coal-fired power plant, International Journal of Greenhouse Gas Control 4 (3) (2010) 499–510.
  • [14] A. Lawal, M. Wang, P. Stephenson, O. Obi, Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation, Fuel 101 (2012) 115–128.
  • [15] J. Kotowicz, P. H. Lukowicz, Influence of chosen parameters on economic effectiveness of a supercritical combined heat and power plant, Journal of Power Technologies 93 (5) (2013) 323.
  • [16] K. Stepczynska, K. Bochon, H. Lukowicz, S. Dykas, Operation of conceptual a-usc power unit integrated with co2 capture installation at part load, Journal of Power Technologies 93 (5) (2013) 383.
  • [17] P. G. Cifre, K. Brechtel, S. Hoch, H. García, N. Asprion,H. Hasse, G. Scheffknecht, Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber, Fuel 88 (12) (2009) 2481–2488.
  • [18] J. Kotowicz, M. A. Brzeczek, The influence of CO2 capture and compression on the economic characteristics of a combined cycle power plant, Journal of Power Technologies 93 (5) (2013) 314.
  • [19] W. Elsner, S. Drobniak, M. Marek, L. Kowalczyk, Sprawozdanie merytoryczna za okres 01.05.2014-30.04.2015, Etap 16.1.IV1.1e, Udział w syntezie wyników, 2015.
  • [20] W. Elsner, Ł. Kowalczyk, P. Niegodajew, S. Drobniak, Thermodynamic analysis of a thermal cycle of supercritical power plant, Mechanics and Mechanical Engineering 15 (3) (2011) 217–225.
  • [21] S. Dykas, S. Rulik, K. Stępczyńska, et al., Thermodynamic and economic analysis of a 900 mw ultra-supercritical power unit, Archives of thermodynamics 32 (3) (2011) 231–244.
  • [22] S. Kjaer, F. Drinhaus, A modified double reheat cycle, in: ASME 2010 Power Conference, American Society of Mechanical Engineers, 2010, pp. 285–293.
  • [23] M. Bazmi, S. Hashemabadi, M. Bayat, Extrudate trilobe catalysts and loading effects on pressure drop and dynamic liquid holdup in porous media of trickle bed reactors, Transport in porous media 99 (3) (2013) 535–553.
  • [24] R. Billet, Packed Towers, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 1995.
  • [25] P. Niegodajew, D. Asendrych, S. Drobniak, Numerical analysis of co2 capture efficiency in post combustion ccs technology in terms of varying flow conditions, Archives of Thermodynamics 34 (4) (2013) 123–136.
  • [26] P. Niegodajew, D. Asendrych, S. Drobniak, W. Elsner, Numerical modelling of CO2 desorption process coupled with phase transformation and heat transfer in ccs installation, Journal of Power Technologies 93 (5) (2013) 354–362.
  • [27] R. Notz, H. P. Mangalapally, H. Hasse, Post combustion CO2 capture by reactive absorption: pilot plant description and results of systematic studies with mea, International Journal of Greenhouse Gas Control 6 (2012) 84–112.
  • [28] M. Wang, A. S. Joel, C. Ramshaw, D. Eimer, N. M. Musa, Process intensification for post-combustion co 2 capture with chemical absorption: a critical review, Applied Energy 158 (2015) 275–291.
  • [29] A. Krótki, L. Więcław-Solny, A. Tatarczuk, A. Wilk, D. Śpiewak, Laboratory research studies of co2 absorption with the use of 30% aqueous monoethanolamine solution, Archiwum Spalania 12 (4) (2012) 195–203.
  • [30] H. Thee, Y. A. Suryaputradinata, K. A. Mumford, K. H. Smith, G. da Silva, S. E. Kentish, G. W. Stevens, A kinetic and process modeling study of co 2 capture with mea-promoted potassium carbonate solutions, Chemical engineering journal 210 (2012) 271–279.
  • [31] T. L. Sønderby, K. B. Carlsen, P. L. Fosbøl, L. G. Kiørboe, N. von Solms, A new pilot absorber for CO2 capture from flue gases: measuring and modelling capture with mea solution, International Journal of Greenhouse Gas Control 12 (2013) 181–192.
  • [32] A. Kothandaraman, Carbon Dioxide Capture by Chemical Absorption, A Solvent Comparison Study, PhD Thesis, Massachusetts Institute of Technology, 2010.
  • [33] P. Niegodajew, L. Kowalczyk, W. Elsner, Thermo-economic optimisation method of modern power plant using complex algorithms combined with revenue requirement method, Procee 6th IC-EpsMsO, Athens, 8-11 July. (2015.
  • [34] M. Finkenrath, Cost and performance of carbon dioxide capture from power generation, 2011.
  • [35] PowerTech, Reference Power Plant North Rhine-Westphalia. Technical report, VGB PowerTech e.V. (project management), 2004.
  • [36] J. Kotowicz, L. Bartela, A. Skorek-Osikowska, Analizy bloku kogeneracyjnego na parametry nadkrytyczne zintegrowanego z instalacja separacji CO2, Wydawnictwo Politechniki Śląskiej, Gliwice, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3045df8-c702-46a1-a924-59b3f291b872
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.