PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Air-purifying respiratory protection for wildland firefighters: current capabilities, limitations and research needs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing frequency and intensity of wildland fires, driven by climate change and expanding human activity, expose firefighters to complex mixtures of harmful smoke constituents. Inhalation hazards include fine particulates, carbon monoxide (CO), aldehydes, volatile organic compounds, and polycyclic aromatic hydrocarbons, many of which exceed recommended occupational exposure limits. While Self-Contained Breathing Apparatus (SCBA) provides reliable protection, the weight and limited service life restrict their routine use in wildland firefighting. Air-purifying respirators (APRs) offer a lighter alternative; however, their protective capacity is uneven. APRs equipped with P2/P3 filters and A-type cartridges effectively reduce particulate and selected organic vapour exposure, yet they offer no protection against CO and have limited sorption capacity for lowmolecular- weight aldehydes and light VOCs. Despite these limitations, APRs remain appealing for certain operational phases, such as mop-up or residual smouldering suppression, where exposure levels are lower and prolonged use is required. Current research gaps include the absence of harmonised test protocols that simulate multipollutant wildfire smoke atmospheres and insufficient long-term epidemiological data. Future work should focus on the development of novel filter media, hybrid filtration systems, and wildfire-specific testing methodologies, complemented by training and awareness-raising among firefighters. Advancing these areas is crucial for bridging regulatory frameworks, laboratory testing, and field practice to ensure effective respiratory protection in increasingly severe wildfire scenarios.
Rocznik
Strony
191--209
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Fire University, Warsaw, Poland
  • Fire University, Warsaw, Poland
autor
  • Headquarters of the State Fire Service, Warsaw, Poland
  • Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
Bibliografia
  • [1] Adams, T. ‘Ted’ et al., (2017). Bridging the divide between fire safety research and fighting fire safely: how do we convey research innovation to contribute more effectively to wildland firefighter safety?. International Journal of Wildland Fire, 26(2), p. 107. DOI: 10.1071/WF16147
  • [2] Adetona, A.M. et al., (2017). Impact of Work Task-Related Acute Occupational Smoke Exposures on Select Proinflammatory Immune Parameters in Wildland Firefighters. Journal of Occupational & Environmental Medicine, 59(7), pp. 679–690. DOI: 10.1097/JOM.0000000000001053
  • [3] Adetona, O. et al., (2016). Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhalation Toxicology, 28(3), pp. 95–139. DOI: 10.3109/08958378.2016.1145771
  • [4] Adetona, O. et al., (2017). Hydroxylated polycyclic aromatic hydrocarbons as biomarkers of exposure to wood smoke in wildland firefighters. Journal of Exposure Science & Environmental Epidemiology, 27(1), pp. 78–83. DOI: 10.1038/jes.2015.75
  • [5] Barker, M., (1926). Gas mask development. Chemical Warfare, 12(7), pp. 11–15. Available at: https://web.archive.org/web/20120212011515/http://www33.brinkster.com/iiiii/gasmask/development.html.
  • [6] Booze, T.F. et al., (2004). A Screening-Level Assessment of the Health Risks of Chronic Smoke Exposure for Wildland Firefighters. Journal of Occupational and Environmental Hygiene, 1(5), pp. 296–305. DOI: 10.1080/15459620490442500
  • [7] Coustal, L., (2023). Forest fires: a record year’, phys.org. Available at: https://phys.org/news/2023-12-forest-year.html.
  • [8] Crofutt, (1874). Eye and lung protectors. Available at: https://patentimages.storage.googleapis.com/3b/f8/97/9257e4510e24fa/US2444536.pdf.
  • [9] DeFlorio-Barker, S. et al., (2019). Cardiopulmonary Effects of Fine Particulate Matter Exposure among Older Adults, during Wildfire and Non-Wildfire Periods, in the United States 2008–2010. Environmental Health Perspectives, 127(3). DOI: 10.1289/EHP3860
  • [10] Dunn, K.H. et al., (2009). Application of End-Exhaled Breath Monitoring to Assess Carbon Monoxide Exposures of Wildland Firefighters at Prescribed Burns. Inhalation Toxicology, 21(1), pp. 55–61. DOI: 10.1080/08958370802207300
  • [11] Fernandez-Anez, N. et al., (2021). Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air, Soil and Water Research, 14, p. 117862212110281. DOI: 10.1177/11786221211028185
  • [12] Groot, E. et al., (2019). A systematic review of the health impacts of occupational exposure to wildland fires. International Journal of Occupational Medicine and Environmental Health. 32(2), pp. 121–140. DOI: 10.13075/ijomeh.1896.01326
  • [13] ISO/TS 16973:2016 Respiratory protective devices Classification for respiratory protective device (RPD), excluding RPD for underwater application, (2016).
  • [14] Jumpponen, M. et al., (2013). Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants. Chemosphere, 90(3), pp. 1289–1293. DOI: 10.1016/j.chemosphere.2012.10.001
  • [15] Kerr, G.H. et al., (2018). Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble. Theoretical and Applied Climatology, 131(1–2), pp. 625–639. DOI: 10.1007/s00704-016-1994-4
  • [16] Koopmans, E. et al., (2020). Exploring prevention and mitigation strategies to reduce the health impacts of occupational exposure to wildfires for wildland firefighters and related personnel: Protocol of a scoping study. Systematic Reviews, 9(1), pp. 1–8. DOI: 10.1186/s13643-020-01381-y
  • [17] Koopmans, E. et al., (2022). Health risks and mitigation strategies from occupational exposure to wildland fire: a scoping review. Journal of Occupational Medicine and Toxicology, 17(1), p. 2. DOI: 10.1186/s12995-021-00328-w
  • [18] Liu, J.C. et al., (2015). A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environmental Research, 136(203), pp. 120–132. DOI: 10.1016/j.envres.2014.10.015
  • [19] MacCarthy, J. et al., (2023). The Latest Data Confirms: Forest Fires Are Getting Worse. World Resources Institute. Available at: https://www.wri.org/insights/global-trends-forest-fires.
  • [20] Materna, B. L. et al., (1992). Occupational Exposures in California Wildland Fire Fighting. American Industrial Hygiene Association Journal, 53(1), pp. 69–76. DOI: 10.1080/15298669291359311
  • [21] McKenzie, D. et al., (2004). Climatic Change, Wildfire, and Conservation. Conservation Biology, 18(4), pp. 890–902. DOI: 10.1111/j.1523-1739.2004.00492.x
  • [22] Naeher, L.P. et al., (2007). Woodsmoke Health Effects: A Review. Inhalation Toxicology, 19(1), pp. 67–106. DOI: 10.1080/08958370600985875
  • [23] Navarro, K. (2020). Working in Smoke: Wildfire Impacts on the Health of Firefighters and Outdoor Workers and Mitigation Strategies. Clinics in Chest Medicine, 41(4), pp. 763–769. DOI: 10.1016/j. ccm.2020.08.017
  • [24] Navarro, K.M. et al., (2017). Occupational Exposure to Polycyclic Aromatic Hydrocarbon of Wildland Firefighters at Prescribed and Wildland Fires. Environmental Science and Technology, 51(11), pp. 6461–6469. DOI: 10.1021/acs.est.7b00950
  • [25] Navarro, K.M. et al., (2023). Characterization of inhalation exposures at a wildfire incident during the Wildland Firefighter Exposure and Health Effects (WFFEHE) Study. Annals of Work Exposures and Health, (August), pp. 1011–1017. DOI: 10.1093/annweh/wxad046
  • [26] Okrasa, M., Leszczyńska, M., Sałasińska, K., Szczepkowski, L., Kozikowski, P., Majchrzycka, K. et al. (2021a). Viscoelastic Polyurethane Foams for Use in Seals of Respiratory Protective Devices. Materials, 14(7), p. 1600. DOI: 10.3390/ma14071600
  • [27] Okrasa, M., Leszczyńska, M., Sałasińska, K., Szczepkowski, L., Kozikowski, P., Nowak, A. et al. (2021b). Viscoelastic Polyurethane Foams with Reduced Flammability and Cytotoxicity. Materials, 15(1), p. 151. DOI: 10.3390/ma15010151
  • [28] Okrasa, M., (2021). Wskaźniki czasu bezpiecznego stosowania pochłaniaczy par substancji organicznych. WSZOP.
  • [29] Panumasvivat, J. et al., (2023). The Urgent Need for Cardiopulmonary Fitness Evaluation among Wildland Firefighters in Thailand. International Journal of Environmental Research and Public Health, 20(4), p. 3527. DOI: 10.3390/ijerph20043527
  • [30] Pelletier, C. et al., (2022). Health research priorities for wildland firefighters: A modified Delphi study with stakeholder interviews. BMJ Open, 12(2), pp. 1–10. DOI: 10.1136/bmjopen-2021-051227
  • [31] PN-EN 136:2001 Sprzęt ochrony układu oddechowego. Maski. Wymagania, badanie, znakowanie, (2001).
  • [32] PN-EN 137:2008 Sprzęt ochrony układu oddechowego. Aparaty powietrzne butlowe ze sprężonym powietrzem wyposażone w maskę. Wymagania, badanie, znakowanie, (2008).
  • [33] PN-EN ISO 16972:2020-09 Sprzęt ochrony układu oddechowego. Słownictwo i znaki graficzne, (2020).
  • [34] Radeloff, V.C. et al., (2018). Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences, 115(13), pp. 3314–3319. DOI: 10.1073/ pnas.1718850115
  • [35] Reid, C.E. et al., (2016). Critical review of health impacts of wildfire smoke exposure’. Environmental Health Perspectives, 124(9), pp. 1334–1343. doi: 10.1289/ehp.1409277.
  • [36] Rice, M.B. et al., (2021). Respiratory impacts of wildland fire smoke: Future challenges and policy opportunities an official American thoracic society workshop report. Annals of the American Thoracic Society, 18(6), pp. 921–930. DOI: 10.1513/AnnalsATS.202102-148ST
  • [37] Regulation of the Minister of Internal Affairs and Administration of 20 June 2007 on the list of products used to ensure public safety or protect health, life and property, as well as the rules for issuing approvals for the use of such products, (2007).
  • [38] Regulation of the Minister of Internal Affairs and Administration of 31 August 2021 on detailed health and safety conditions for firefighters of the State Fire Service, (2021).
  • [39] Regulation (EU) 2016/425 of the European Parliament and of the Council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC (2016) Official Journal of the European Union
  • [40] Rukikaire, K., (2022). Number of wildfires to rise by 50 per cent by 2100 and governments are not prepared, experts warn. Available at: https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-cent-2100-and-governments-are-not-prepared.
  • [41] Spelce, D. et al., (2017). Pre-World War I Firefighter Respirators and the U.S. Bureau of Mines Involvement in WWI. Journal of the International Society for Respiratory Protection, 34(2), pp. 128–135. Available at: http://www.ncbi.nlm.nih.gov/pubmed/32514225.
  • [42] Stenhouse, J., (1855). On the Economical Applications of Charcoal to Sanitary Purposes. Notices of the Proceedings at the Meetings of the Members of the Royal Institution of Great Britain, 2.
  • [43] The invention of the gas mask, (2013). Available at: https://web.archive.org/web/20130502145330/ http://www33.brinkster.com/iiiii/gasmask/page.html.
  • [44] Tyndall, J., (1874). On some recent experiments with a fireman’s respirator. Proceedings of the Royal Society of London, 22, pp. 359–361.
  • [45] Withen, P., (2015). Climate Change and Wildland Firefighter Health and Safety. NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy, 24(4), pp. 577–584. DOI: 10.2190/NS.24.4.i.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f30387d4-9d42-4c74-a255-9ef56e999396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.