Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ stosowanych materiałów na niezawodność belek żelbetowych w warunkach normalnej i silnej korozji
Języki publikacji
Abstrakty
Concrete structures are exposed to a variety of damages during their lifetime each of which could contribute to reducing their service life and load bearing capacity. Since most of parameters have special role in estimating capacity of members which are not certain, probabilistic evaluating the performance of concrete structures could bring more realistic perception about analysis and design of these structures. One of the most frequent probable damages is corrosion. The main focus of this study is placed on reliability assessment of flexural behavior of a reinforced concrete beam experienced pitting corrosion via Monte Carlo simulation. In addition, the effects of time to corrosion initiation, steel rebar diameter, yielding stress of rebars, strength class of cement, aggregate type and compressive strength of concrete, are included both in intense and normal pitting corrosion. The results clearly illustrate that occurrence of intense corrosion in concrete with low compressive strength, which used of higher strength class of cement and crushed stone aggregate, and less initial time for corrosion will lead to considerable reduction in service life even in some cases nearly half.
W trakcie cyklu życia, konstrukcje betonowe są narażone na wiele uszkodzeń, z których każde może przyczyniać się do skrócenia ich żywotności i nośności. Ponieważ większość parametrów odgrywających szczególną rolę w szacowaniu nośności elementów cechuje niepewność, ocena probabilistyczna charakterystyk struktur betonowych może dawać bardziej realistyczny obraz analizy i projektowania tych struktur. Jednym z najczęściej występujących uszkodzeń struktur żelbetowych jest korozja. Głównym celem niniejszego badania była ocena niezawodności zachowania zginanej belki żelbetowej doświadczalnie poddanej korozji wżerowej poprzez symulację Monte Carlo. Ponadto, badano oddziaływanie czasu inkubacji korozji, średnicy stalowych prętów zbrojeniowych, granicy plastyczności tych prętów, klasy wytrzymałości cementu, rodzaju kruszywa i wytrzymałości na ściskanie betonu zarówno w warunkach silnej jak i normalnej korozji wżerowej. Wyniki jasno pokazują, że wystąpienie silnej korozji w betonie o małej wytrzymałości na ściskanie, do produkcji którego wykorzystano cement i kruszywo kamienne o wyższej klasie wytrzymałości, oraz krótszy czas inkubacji korozji prowadzą do znacznego skrócenia żywotności belek, w niektórych przypadkach nawet prawie o połowę.
Czasopismo
Rocznik
Tom
Strony
393--402
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Department of Civil Engineering, East Tehran Branch Islamic Azad University Tehran, Iran
autor
- The Centre of Excellence for Fundamental Studies in Structural Engineering Iran University of Science and Technology P.o.BoX: 16765-163; Narmak, Tehran, Iran
autor
- School of Civil Engineering Iran University of Science and Technology P.o. Box 16765-163, Narmak, Tehran, Iran
autor
- Department of Civil Engineering, Parand Branch Islamic Azad University Parand, Iran
Bibliografia
- 1. Ahmad S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction–A review. Cement and Concrete Composite 2003; 25: 459-471, https://doi.org/10.1016/S0958-9465(02)00086-0.
- 2. Almusallam A A. Effect of degree of corrosion on the properties of reinforcing steel bars. Construction and Building Materials 2001; 15(8): 361-368, https://doi.org/10.1016/S0950-0618(01)00009-5.
- 3. Barone G, Frangopol D M. Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures. Reliability Engineering & System Safety 2014; 123: 21-37, https://doi.org/10.1016/j.ress.2013.09.013.
- 4. Bastidas-Arteaga E, Bressolette P, Chateauneuf A, Sánchez-Silva M. Probabilistic lifetime assessment of RC structures under coupled corrosion–fatigue deterioration processes. Structural Safety 2009; 31(1): 84-96, https://doi.org/10.1016/j.strusafe.2008.04.001.
- 5. Bastidas-Arteaga E, Sánchez-Silva M, Chateauneuf A, Silva M R. Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures. Structural Safety 2008; 30(2): 110-129, https://doi.org/10.1016/j.strusafe.2006.09.001.
- 6. Bhargava K, Mori Y, Ghosh A K. Time-dependent reliability of corrosion-affected RC beams—Part 1: Estimation of time-dependent strengths and associated variability. Nuclear Engineering and Design 2011; 241(5): 1371-1384, https://doi.org/10.1016/j.nucengdes.2011.01.005.
- 7. Building Research Establishment. Iranian Design Code for Normal Concrete Mixes. second edition 2005.
- 8. Bushman J B, Engineer P P. Calculation of Corrosion Rate from Corrosion Current (Faraday's Law). Bushman & Associates Inc. 2000.
- 9. Chalk P L, Corotis R B. Probability model for design live loads. Journal of the Structural Division. 1980 Oct; 106(10): 2017-2033.
- 10. Dai H, Wang W. Application of low-discrepancy sampling method in structural reliability analysis. Structural Safety 2009; 31(1): 55-64, https://doi.org/10.1016/j.strusafe.2008.03.001.
- 11. Darmawan M S. Pitting corrosion model for reinforced concrete structures in a chloride environment. Magazine of Concrete Research 2010; 62(2): 91-101, https://doi.org/10.1680/macr.2008.62.2.91.
- 12. Dimitri V V. Deterioration of strength of RC beams due to corrosion and it's influence on beam reliability, Journal of Structural Engineering 2007; 133: 15-42.
- 13. Ellingwood B. Development of a probability based load criterion for American National Standard A58: Building code requirements for minimum design loads in buildings and other structures. US Department of Commerce, National Bureau of Standards; 1980, https://doi. org/10.6028/nbs.sp.577.
- 14. Enright M E, Frangopol, D M. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Engineering Structures Journal 1998; 20(11): 960-971, https://doi.org/10.1016/S0141-0296(97)00190-9.
- 15. Frangopol D M, Lin K-Y, Estes A C. Reliability of reinforced concrete girders under corrosion attack. Journal of Structural Engineering 1997; 123(3): 286-297, https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(286).
- 16. Ghanooni-Bagha M, Shayanfar M A, Shirzadi-Javid A A, Ziaadiny H. Corrosion-induced reduction in compressive strength of selfcompacting concretes containing mineral admixtures. Construction and Building Materials 2016; 113: 221-228, https://doi.org/10.1016/j. conbuildmat.2016.03.046.
- 17. Gonzales J A, Andrade C, Alonso C, Feliu S. Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement. Cement and. Concrete Research 1995; 25(2): 257-264, https://doi.org/10.1016/0008-8846(95)00006-2.
- 18. Li C Q. Reliability based service life prediction of corrosion affected concrete structures. Journal of Structural Engineering 2004; 130(10): 1570-1577, https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1570).
- 19. Li CQ, Zheng J J, Lawanwisut W, Melchers R E. Concrete delamination caused by steel reinforcement corrosion. Journal of Materials in Civil Engineering 2007; 19(7): 591-600, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(591).
- 20. Mirza S A, MacGregor J G. Variability of mechanical properties of reinforcing bars. Journal of the Structural Division 1979; 105 (ASCE 14590 Proceeding): 921-937.
- 21. Naess A, Leira BJ, Batsevych O. System reliability analysis by enhanced Monte Carlo simulation. Structural Safety 2009; 31(5): 349-355, https://doi.org/10.1016/j.strusafe.2009.02.004.
- 22. Nogueira C G, Leonel E D. Probabilistic models applied to safety assessment of reinforced concrete structures subjected to chloride ingress. Engineering Failure Analysis 2013; 31: 76-89, https://doi.org/10.1016/j.engfailanal.2013.01.023.
- 23. Nowak A S, Collins K R. Reliability of structures. CRC Press; 2012.
- 24. Nowak A S, Szerszen M M, Szeliga E K, Szwed A, Podhorecki P J. Reliability-based calibration for structural concrete. University of Nebraska, UNLCE. 2005:05-3.
- 25. Östlund L. An estimation of γ-values. Bulletin du Comité Euro-international du Béton 1991(202): 38-97.
- 26. Papadakis V G, Roumeliotis A P, Fardis M N, Vagenas C G. Mathematical modelling of chloride effect on concrete durability and protection measures. Concrete repair, rehabilitation and protection 1996; 165-174.
- 27. Pedeferri P. La corrosionenelcalcestruzzo: fenomenologia, prevenzione, diagnosi, rimedi, AICAP, progetto Ulisse, Pubblicemento 2005.
- 28. Shayanfar M A, Barkhordari M A, Ghanooni-Bagha M. Estimation of Corrosion Occurrence in RC Structure Using Reliability Based PSO Optimization. Periodica Polytechnica. Civil Engineering 2015; 59(4): 531-543, https://doi.org/10.3311/PPci.7588.
- 29. Shayanfar M A, Barkhordari M A, Ghanooni-Bagha M. Probability calculation of rebars corrosion in reinforced concrete using css algorithms. Journal of Central South University 2015; 22(8): 3141-3150, https://doi.org/10.1007/s11771-015-2851-9.
- 30. Shayanfar M A, Ghanooni-Bagha M, Jahani E. Reliability theorey of structure. Iust publication Tehran, Iran 2016.
- 31. Simioni P. Seismic response of reinforced concrete structures affected by reinforcement corrosion (Doctoral dissertation, University of Florence) 2009.
- 32. Stewart M G, Al-Harthy A. Pitting corrosion and structural reliability of corroding RC structures, experimental data and probabilistic analysis. Reliability Engineering and System Safety 2008; 93(3), 373–382, https://doi.org/10.1016/j.ress.2006.12.013.
- 33. Stewart M G. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams. Structural Safety 2009; 31(1): 19-30, https://doi.org/10.1016/j.strusafe.2007.12.001.
- 34. Stewart M G. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. Structural Safety 2004; 26(4); 453–470, https://doi.org/10.1016/j.strusafe.2004.03.002.
- 35. Stewart M G, Suo Q. Extent of spatially variable corrosion damage as an indicator of strength and time-dependent reliability of RC beams. Engineering Structures 2009; 31(1): 198-207, https://doi.org/10.1016/j.engstruct.2008.08.011.
- 36. Turnbull A. Review of modelling of pit propagation kinetics. British Corrosion Journal. 2013 Jul 18.
- 37. Tuutti K. Corrosion of steel in concrete. 1982.
- 38. Val D V, Melchers R E. Reliability of deteriorating RC slab bridges. Journal of structural engineering 1997; 123(12): 1638-1644, https://doi. org/10.1061/(ASCE)0733-9445(1997)123:12(1638).
- 39. Vu K A, Stewart M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models. Structural Safety 2000; 22(4): 313-333, https://doi.org/10.1016/S0167-4730(00)00018-7.
- 40. Vu K, Stewart M G, Mullard J. Corrosion-induced cracking: experimental data and predictive models. ACI Structural Journal 2005; 102(5): 719-726.
- 41. Zhang X, Wang J, Zhao Y, Tang L, Xing F. Time-dependent probability assessment for chloride induced corrosion of RC structures using the third-moment method. Construction and Building Materials 2015; 76: 232-244, https://doi.org/10.1016/j.conbuildmat.2014.10.039.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2f7c9e5-ff8b-4838-9997-c08d2ddd1f9a