PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An itae optimal sliding mode controller for systems with control signal and velocity limitations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a sliding mode controller, which can be applied for second-order systems, is designed. Robustness to external disturbances, finite regulation time and a good system’s behaviour are required for a sliding mode controller. In order to achieve the first two of these three goals, a non-linear, time-varying switching curve is introduced. The representative point (state vector) belongs to this line from the very beginning of the control process, which results in elimination of the reaching phase. The stable sliding motion along the switching curve is provided. Natural limitations such as control signal and system’s velocity constraints will be taken into account. In order to satisfy them, the sliding line parameters will be properly selected. However, a good dynamical behaviour of the system has to be provided. In order to achieve that, the integral time absolute error (ITAE) quality index will be introduced and minimised. The simulation example will verify theoretical considerations.
Rocznik
Strony
230--238
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
  • Institute of Automatic Control, Łódź University of Technology, ul. Stefanowskiego 18., 90-537 Łódź, Poland
  • Institute of Automatic Control, Łódź University of Technology, ul. Stefanowskiego 18., 90-537 Łódź, Poland
  • Institute of Automatic Control, Łódź University of Technology, ul. Stefanowskiego 18., 90-537 Łódź, Poland
Bibliografia
  • 1. Ali N, Liu Z, Armghan H, Ahmad I, Hou Y. LCC-S-Based integral terminal sliding mode controller for a hybrid energy storage system using a wireless power system. Energies. 2021;14: 1693.
  • 2. Chang TH, Hurmuzlu Y. Trajectory tracking in robotic systems using variable structure control without a reaching phase, 1992 American Control Conference. IEEE. 1992;1505–1509.
  • 3. Chang TH, Hurmuzlu Y. Sliding control without reaching phase and its application to bipedal locomotion. Journal of Dynamic Systems. Measurement and Control. 1993, 115(3):447–455.
  • 4. Chen Y, Bu W, Qiao Y. Research on the Speed Sliding Mode Obser-vation Method of a Bearingless Induction Motor, Energies. 2021:14.
  • 5. Clemente A, Montiel M, Barreras F, Lozano A, Costa-Castello R, Vanadium Redox Flow Battery State of Charge Estimation Using a Concentration Model and a Sliding Mode Observer. IEEE Access. 2021;9:72368–72376.
  • 6. Drazenović B. The invariance conditions in variable structure sys-tems, Automatica.1969;5(3):287–295.
  • 7. El-Sousy FFM, Alenizi FAF. Optimal Adaptive Super-Twisting Slid-ing-Mode Control Using Online Actor-Critic Neural Networks for Per-manent-Magnet Synchronous Motor Drives, IEEE Access, 2021; 9:82508–82534.
  • 8. Hu J, Zhang H, Liu H, Yu X. A survey on sliding mode control for networked control systems. International Journal of Systems Sci-ence. 2021;52(6):1129–1147.
  • 9. Incremona GP, Rubagotti M, Tanelli M, Ferrara A. A general frame-work for switched and variable-gain higher-order sliding mode con-trol, IEEE Trans. on Aut. Contr. 2020;66(4):1717–1724.
  • 10. Komurcugil H. A new sliding mode control for single-phase UPS inverters based on rotating sliding surface. IEEE International Sym-posium on Industrial Electronics. 2010;579–584.
  • 11. Komurcugil H. Rotating-sliding-line-based sliding-mode control for single-phase UPS Inverters. IEEE Transactions on Industrial Elec-tronics. 2012;59(10):3719–3726.
  • 12. Li H, Chen X, Zhang H, Cui X. High-Precision Speed Control for Low-Speed Gimbal Systems Using Discrete Sliding Mode Observer and Controller. IEEE Trans. Emerg. Sel. Topics Power Electron. 2022; 10:2871–2880.
  • 13. Pietrala M, Leśniewski P, Bartoszewicz A. Sliding Mode Control with Minimization of the Regulation Time in the Presence of Control Sig-nal and Velocity Constraints. Energies. 2021;14(10):2887.
  • 14. Pietrala M, Leśniewski P, Bartoszewicz A. IAE Minimization in Sliding Mode Control With Input and Velocity Constraints. IEEE Access. 2022;10:28631–28641.
  • 15. Shang W, Jing G, Zhang D, Chen T, Liang Q. Adaptive Fixed Time Nonsingular Terminal Sliding-Mode Control for Quadrotor Formation With Obstacle and Inter-Quadrotor Avoidance. IEEE Access. 2021; 9: 60640–60657,.
  • 16. Skruch P, Długosz M. Design of terminal sliding mode controllers for disturbed non-linear systems described by matrix differential equa-tions of the second and first orders. Applied Sciences. 2019; 9(11):2325–2344.
  • 17. Tang Y. Terminal sliding mode control for rigid robots. Automatica. 1998;34:51–56.
  • 18. Tran AT, Minh BLN, Huynh VV, Tran PT, Amaefule EN, Phan VD, Nguyen TM. Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator. Energies. 2021; 14.
  • 19. Ullah N, Mehmood Y, Aslam J, Ali A, Iqbal J. UAVs-UGV, Leader Follower Formation Using Adaptive Non-Singular Terminal Super Twisting Sliding Mode Control. IEEE Access. 2021;9:74385–74405.
  • 20. Utkin V, Drakunov SV. On discrete-time sliding mode control, Proc. IFAC Conf. Nonlinear Control. 1989;484–489.
  • 21. Wang Y, Feng Y, Zhang X, Liang J. A new reaching law for antidis-turbance sliding-mode control of PMSM speed regulation system. IEEE Trans. Power Electron. 2020;35(4):4117–4126.
  • 22. Wang T, Tan N, Zhang X, Li G, Su S, Zhou J, Qiu J, Wu Z, Zhai Y, Labati RD, Piuri V, Scotti F. A Time-Varying Sliding Mode Control Method for Distributed-Mass Double Pendulum Bridge Crane With Variable Parameters. IEEE Access. 2021;9:75981–75992.
  • 23. Wang P, Xu Y, Ding R, Liu W, Shu S, Yang X. Multi-Kernel Neural Network Sliding Mode Control for Permanent Magnet Linear Syn-chronous Motors. IEEE Access. 2021;9:57385–57392.
  • 24. Xu L, Shao X, Zhang W. USDE-Based Continuous Sliding Mode Control for Quadrotor Attitude Regulation: Method and Application. IEEE Access. 2021;9:64153–64164.
  • 25. Yousufzai IK, Waheed F, Khan Q, Bhatti AI, Ullah R, Akmeliawati R. A Linear Parameter Varying Strategy Based Integral Sliding Mode Control Protocol Development and Its Implementation on Ball and Beam Balancer. IEEE Access. 2021;9:74437–74445.
  • 26. Zhihong M, Yu XH, Terminal sliding mode control of MIMO linear systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1997;44:1065–1070.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2f65ce1-6f4d-427a-a05e-c92757b17039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.