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Abstract: In this paper, a sliding mode controller, which can be applied for second-order systems, is designed. Robustness to external  
disturbances, finite regulation time and a good system’s behaviour are required for a sliding mode controller. In order to achieve the first 
two of these three goals, a non-linear, time-varying switching curve is introduced. The representative point (state vector) belongs to this 
line from the very beginning of the control process, which results in elimination of the reaching phase. The stable sliding motion along  
the switching curve is provided. Natural limitations such as control signal and system’s velocity constraints will be taken into account.  
In order to satisfy them, the sliding line parameters will be properly selected. However, a good dynamical behaviour of the system  
has to be provided. In order to achieve that, the integral time absolute error (ITAE) quality index will be introduced and minimised.  
The simulation example will verify theoretical considerations. 
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1. INTRODUCTION 

The sliding mode approach belongs to the class of variable 
structure control methodologies. The main idea is that the trajecto-
ry of the system state is constrained to a sub-space of the state 
space. This simplifies the dynamical behaviour of the system. 
Moreover, it allows us to obtain exceptional robustness with re-
spect to external perturbations [6] and requires small computa-
tional effort. These advantages made sliding mode control profuse 
in the field of mechanical systems, electric drives and similar 
industrial applications. The fundamental concepts of this method 
were introduced in the previous century [20]; however, it remains 
a lively field of inquiry both from the practical [21] as well as theo-
retical [9] point of view. 

Due to the discontinuous control signal, sliding mode control is 
especially useful in electric devices and power electronic control; 
as in these applications, the control signal (semiconductor switch 
state) is by its nature not continuous. The paper [7] presents a 
super-twisting sliding mode controller for speed control of perma-
nent magnet synchronous machine (PMSM). The parameters of 
the controller are tuned on-line using a neural network to adapt to 
the varying, unknown disturbance values. The computer simula-
tions as well as experimental tests confirm marked improvements 
over traditional sliding mode control as well as a PID (Proportional 
Integral Derivative) controller. The authors of [23] develop a slid-
ing mode controller for a similar problem of linear PMSM control. 
In order to minimise chattering, it is enhanced by a neural net-
work, which compensates the unknown impact of perturbations. 
To reduce chattering even further, the sign function in the control-
ler is replaced by a time-varying saturation function, which deter-
mines the size of the boundary region to guarantee small error 

and minimum chattering. The control methodology is verified on a 
laboratory stand and put alongside a sliding mode controller with-
out the fuzzy logic extension. The results plainly demonstrate an 
improvement in control precision and oscillation reduction. In 
contemporary applications, it becomes increasingly common to 
control the plant through a network system, instead of a direct 
connection between each sensor/actuator and the controller. Such 
an approach can lower the costs and increase the modularity of 
the system. Unfortunately, it also presents some new difficulties, 
namely packet losses and transmission delays. In the work [8], an 
extensive review of modern sliding mode control algorithms that 
utilise networked control is presented. 

In [10], a new sliding mode control approach was used in un-
interruptible power supply (UPS) systems. The slope of the sliding 
line depends on the output voltage error via fuzzy logic. A simula-
tion example demonstrated that the total harmonic distortion is 
lower than that in the strategy with the fixed sliding line. Further-
more, in [11], a laboratory experiment for the proposed strategy 
was performed. Terminal sliding mode control for two classes of 
non-linear systems was implemented in [16]. The first one com-
prises systems with the first- and second-order derivatives, and 
the second one included only first-order derivatives. The controller 
provided a finite reaching time and the stable sliding motion. 
Computer simulations included RLC (Resistor, Inductor, Capaci-
tor) and RC (Resistor, Capacitor) plants with a non-linear resistor 
and capacitor. Terminal sliding mode control was also used for 
multi input multi output (MIMO) systems in [26]. The non-linear 
switching curve was selected in order to achieve a finite time 
convergence to the demand state. 

The sliding mode approach is regularly applied not only in 
controllers but also in observers. One of its advantages is forcing 
the estimation error to zero in finite time [1, 17], in contrast to 

https://orcid.org/0009-0008-6715-4967
https://orcid.org/0000-0003-4131-6928
https://orcid.org/0000-0002-1271-8488


DOI 10.2478/ama-2023-0026           acta mechanica et automatica, vol.17 no.2 (2023) 
Special Issue "Modern Trends in Automation and Robotics in tribute to Professor Tadeusz Kaczorek" 

231 

asymptotic convergence in “traditional” observers. In the paper [5], 
the state of charge (SoC) estimation in a vanadium redox battery 
is considered. The authors begin by deriving a concentration 
model and tuning it using particle swarm optimisation. Next, it is 
transformed to the canonical control form, and a sliding mode 
observer is proposed. Since SoC in an actual battery is hard to 
measure directly, the battery voltage discrepancy between the 
observer and the real plant is used to assess the observation 
precision. What is more is the colour of the electrolytes in the full 
charge and discharge state verifies the observer performance. In 
the paper [4], the stator current and rotor flux linkage in a bearing-
less induction machine is estimated via a sliding mode observer. 
Such motors have important advantages, resulting from replacing 
mechanical bearings by additional windings in the stator. With 
proper control of the current in the windings, radial forces can be 
developed, which make the rotor “levitate” inside of the stator. 
This allows the motor to attain significantly higher speeds and 
lowers friction force. A saturation function was used to reduce the 
chattering of the observer. The results of computer simulations 
show that the presented observer has faster convergence and 
lesser steady state error than the model reference adaptive sys-
tem (MRAS) speed identification, which is typically used in its 
place. The sliding mode paradigm was also used in [12] both for 
observer and controller design for a gimbal control system for use 
in satellite orientation control. The performance is verified in simu-
lations and in tests on a laboratory stand. 

In the article [2], a sliding mode controller was implemented 
on a robotic manipulator. The reaching phase was eliminated by 
selecting the switching curve parameters in such a way that the 
initial state belongs to it. In the first example, the proposed strate-
gy was applied to control the two-joint manipulator. The stable 
sliding motion was provided, and the convergence to the demand 
state is faster than that in previous methods. Moreover, the ro-
bustness to the external disturbances and modelling uncertainties 
was achieved. In the second example, the five-joint, bipedal ma-
nipulator was considered. A similar approach was implemented in 
[3], where the example with five-joint, bipedal manipulator was 
studied in greater detail. Moreover, the strategy was compared 
with a classical robot controller.  

The control of unmanned aerial vehicles (UAVs) is recently 
very active and often utilises the sliding mode methodology. In the 
paper [24], quadrotor control is analysed. A reaching law compris-
ing two hyperbolic functions is introduced. It enables on the one 
hand rapid convergence at a large distance from the switching 
hyperplane, while on the other hand it limits the risk of exciting 
oscillations in its vicinity. Then, a “system dynamics estimator” is 
derived in order to assess the wind impact. In general, using 
disturbance observers allows us to reduce chattering since it 
enables a reduction of the discontinuous portion of the control 
signal. The estimator design is grounded on the assumption of 
bounded variation of wind speed. Since in reality, the wind can 
come in gusts, it is not clear if this premise is realistic. Although 
the approach is tested on a real UAV, the tests are performed 
inside a laboratory, with constant wind speed simulated by a fan. 
Thus, it is unclear, how the proposed controller would perform in 
real conditions. A similar problem of UAV formation control was 
tackled in [19], where an adaptive non-singular terminal super-
twisting sliding mode controller was proposed. One of the uses of 
UAV formation is inspection works, such as monitoring electric 
cables or solar panels. In the proposed approach, a sliding mode 
trajectory tracking controller for the formation leader is derived. 
Based on this trajectory, a formation controller produces trajecto-

ries for all of the following UAVs. Then, the same controller which 
was used for the leader is implemented in every follower. The 
robustness to wind perturbations is verified by computer simula-
tions. The formation control problem was also analysed in [15] 
where a non-singular terminal sliding mode controller was de-
signed. The major difference is that in [15] the authors assume 
that only local distance information is available, as not all followers 
are able to directly communicate with the leader. Furthermore, a 
collision avoidance mechanism was introduced, which is based on 
an artificial potential field. The concept was analysed in theory, as 
well as tested in computer simulations. 

The topic of the paper [22] is control of a bridge crane. The 
authors propose a time-varying sliding mode controller. Similarly, 
as in this work, the sliding hyperplane initially passes through the 
starting state, which ensures robustness from the beginning of the 
control process. In the selected model, the movement of all the 
masses (the load, the hook and the trolley) are taken into account, 
while the main goal is to move the suspended load rapidly but not 
induce large oscillations in the system. The authors compare their 
approach with two methods with constant sliding hyperplanes in 
computer simulations. The advantages, namely improved robust-
ness and smaller oscillations, are evident. The task of oscillation 
minimisation of moving masses was also considered in [25] where 
a benchmark problem of balancing a ball on a beam was ana-
lysed. The reaching phase was removed by using an integral 
sliding mode controller, while the sign function was smoothed out 
to reduce chattering. The laboratory tests confirm the impressive 
position control precision. In the paper [18], a second-order sliding 
mode controller for frequency control in a multi-area power system 
was derived. The unknown system states are first estimated using 
a linear observer. Then, a sliding mode controller utilises this 
information to reduce the frequency deviations.  

While designing any practical controller, it is necessary to 
consider the constraints of the states and control action. One 
example is limiting the velocity in order to prevent mechanical 
damage. In our research, we came upon several methods which 
combine these bounds with sliding mode control. This motivated 
us to design such a sliding mode controller, which achieves good 
performance, despite limitations. This paper builds upon the pre-
vious work [13], by taking into account the minimisation of a dif-
ferent quality criterion. The method allows the designer to ensure 
a priori known bound on the system velocity and/or the control 
signal value. 

2. SLIDING MODE CONTROLLER DESIGN 

This section will present the sliding mode controller for the 
second-order system. During the design, we will focus on the 
following several main goals: 
1. The robustness for the whole control process has to be ob-

tained. It will be achieved by using a time-varying sliding 
curve, and as the result of a consequence, the reaching phase 
will be eliminated. 

2. The state vector (representative point) has to reach the pre-
determined demand state in finite time. 

3. External disturbances and natural restrictions such as control 
signal or velocity limitations have to be considered. 

4. The integral time absolute error (ITAE) quality index has to be 
minimised in order to evaluate the performance of the control-
ler. 
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Let us consider the following system: 

Θ1̇(τ) = Θ2(τ)                                                                (1) 

Θ2̇(τ) = Ψ(Θ1(τ), Θ2(τ), τ) + Υ(τ) + ξν(τ) 

where Θ1(τ) describes the position of the system and Θ2(τ) is 
its velocity. Two functions Ψ (function of state vector and time τ) 

and Υ (external disturbances) vary in time. Nevertheless, due to 
the practical considerations, the absolute value of the sum of 
these functions has to be limited from above by a known, positive 

parameter denoted by Ω. This inequality can be written as follows: 

|Ψ(Θ1(τ), Θ2(τ), τ) + Υ(τ)| ≤ Ω.          (2) 

The main advantage of using inequality (2) is that it allows to 
describe any bounded time-varying uncertainties. One does not 
have to assume any frequency distribution of the disturbances, 
which can be hard to obtain in practice. Positive scalar ξ affects 

the control signal ν. The representative point starts moving from 
any position different from the desired one which is equal to 0, i.e 
Θ1(0) ≠ 0 and Θ2(0) = 0. Moreover, it has to stop in the 

desired state. Therefore, the demand point is equal to (0,0). The 
first goal that we mentioned in this section was the robustness for 
the whole control process and the elimination of the reaching 
phase. In order to achieve that goal, we introduce a time-varying, 
non-linear switching curve described by the following equation: 

𝑠(τ) = Θ2(τ) + 𝜅(τ) sgn(Θ1(τ))√|Θ1(τ)|.         (3) 

The function 𝜅 corresponds to the variation rate of the sliding 

curve. The faster 𝜅 changes in time, the faster the sliding line 

evolves. Once 𝜅 ceases to change, the sliding line remains sta-
tionary. It is given as follows: 

𝜅(𝜏) = {
𝛾𝜏 𝑓𝑜𝑟 𝜏 ≤ 𝜏0
𝛾𝜏0 𝑓𝑜𝑟 𝜏 > 𝜏0

.          (4) 

Parameter γ is positive and denotes the movement speed of the 

switching curve. At the time τ0, that curve stops and remains 
fixed. Sign function sgn is equal to 1 for positive arguments, is 

equal to 0 for 0 and is equal to 1 for negative arguments. Substi-
tuting τ =  0  one can see that 

𝑠(0) = Θ2(0) + κ(0) sgn(Θ1(0))√|Θ1(0)| = 0,            (5) 

which means that the representative point is on the sliding line at 
the initial state and the reaching phase is eliminated. It results in 
robustness to the external disturbances for the whole control 
process. In order to provide the stable sliding motion, we propose 
the following control signal: 

𝜈(𝜏) = −
1

ξ
sgn(Θ1(τ)) √|Θ1(τ)|

𝑑

𝑑τ
κ(τ) 

−
Θ2(τ)κ(τ)

2ξ√|Θ1(τ)|

Ω

ξ
sgn(𝑠(τ)).              (6) 

Theorem 2.1 Control signal Eq. (6) provides the stable sliding 
motion for the whole control process. To prove the stability of the 
sliding motion, we have to guarantee that the following inequality 

𝑠(τ)�̇�(τ) ≤ 0             (7) 

is fulfilled for any τ > 0. The strict inequality is not necessary 
because the representative point is on the switching curve at the 
initial state. We determine the derivative of the sliding variable as 
follows: 

�̇�(τ) =
𝑑

𝑑τ
Θ2(τ) + sgn(Θ1(τ))√|Θ1(τ)|κ̇(τ) +

Θ2(τ)κ(τ)

2√|Θ1(τ)|
 (8) 

Using Eq. (1), we obtain the following: 

�̇�(τ) = Ψ(Θ1(τ), Θ2(τ), τ) + Υ(τ) − Ω sgn(𝑠(τ))             (9) 

From Eq. (2) and the sign function properties, we obtain that 
inequality (7) is true. 

3. ADMISSIBLE SETS 

In this section, three sets of the switching curve parameters 
that guarantee the control signal, system’s velocity and both of 
these quantities limitation will be determined. These sets will be 

composed of two parameters: γ and τ0. Moreover, we will cover 
two possible outcomes–when the sliding line stops during the 
control process and when the demand state is reached when it is 
still in motion. Let us start by deriving formulas for absolute values 
of both system’s position and system’s velocity. From Eq. (3) and 
the fact that the sliding variable is equal to zero, we have the 
following: 

Θ2(τ) = −κ(τ) sgn(Θ1(τ))√|Θ1(τ)|.         (10) 

Using Eqs (1) and (10), one can obtain the following: 

Θ1(τ) + κ(τ) sgn(Θ1(τ))√|Θ1(τ)| = 0 .       (11) 

The above differential equation is fulfilled for 

√|Θ1(τ)| =

{
 
 

 
 𝛿1 −

γτ2

4
𝑓𝑜𝑟 τ ∈ [0, τ0)

𝛿1 −
γτ2

4
𝑓𝑜𝑟 τ ∈ (τ0, τ𝑓]

0 𝑓𝑜𝑟 τ ∈ (τ𝑓 , ∞)

, (12) 

where τf denotes the regulation time. System’s position has to be 
a continuous function. Therefore, in order to fulfil that property, the 
absolute value of Θ1 has to be of the following form: 

|Θ1(τ)| =

{
 
 

 
 (√|Θ1(0)| −

γτ2

4
)
2

𝑓𝑜𝑟 τ ∈ [0, τ0)

(√|Θ1(0)| +
γτ0

2

4
−
γτ0τ

4
) 𝑓𝑜𝑟 τ ∈ (τ0, τ𝑓]

0 𝑓𝑜𝑟 τ ∈ (τ𝑓, ∞)

      (13) 

and the regulation time is given as follows: 

τ𝑓 =
1

2
τ0 +

2√|Θ1(0)|

γτ0
.           (14) 

In order to derive the absolute value of the system’s velocity, 
we use Eqs (10) and (13) and get: 
|Θ2(τ)| = 

{
 
 

 
 γτ√|Θ1(0)| −

γ2τ3

4
𝑓𝑜𝑟 τ ∈ [0, τ0)

γτ0√|Θ1(0)| +
γ2τ0

3

4
−

γ2τ0
2τ

4
𝑓𝑜𝑟 τ ∈ (τ0, τ𝑓]

0 𝑓𝑜𝑟 τ ∈ (τ𝑓 , ∞)

.       (15) 

In the second possible scenario, when the switching curve 
moves for the whole control process, we take into account only 
two time intervals. In this case, the absolute values of system’s 
position and system’s velocity can be written as follows: 
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|Θ1(τ)| = {
(√|Θ1(0)| −

γτ2

4
)
2

𝑓𝑜𝑟 τ ∈ [0, τ𝑓)

0 𝑓𝑜𝑟 τ ∈ (τ𝑓 ,∞)
    (16) 

|Θ2(τ)| = {
γτ√|Θ1(0)| −

γ2τ3

4
𝑓𝑜𝑟 τ ∈ [0, τ𝑓)

0 𝑓𝑜𝑟 τ ∈ (τ𝑓 , ∞)
.    (17) 

Regulation time is derived as follows: 

τ𝑓 =
2 √|Θ1(0)|
4

√γ
 .       (18) 

3.1. Control signal admissible set 

In order to derive the admissible set in which the absolute val-
ue of the control signal is bounded from above the following ine-
quality, 

|ν(τ)| ≤ ν𝑚𝑎𝑥           (19) 

has to be fulfilled for any τ ≥ 0. Parameter νmax is the maximum 
admissible value of the control signal. After substituting Eqs (6)–
(19), we obtain: 

 |sgn(Θ1(τ))√Θ1(τ)κ̇(τ) +
Θ2(τ)κ(τ)

2√Θ1(τ)
+ Ω sgn(𝑠(τ))| ≤

|ξ|ν𝑚𝑎𝑥 .            (20) 

Using properties of the absolute value, we can simplify the 
above inequality to the following form: 

|√|Θ1(τ)|κ̇(τ) −
κ2(τ)

2
| ≤ |𝜉|𝜈𝑚𝑎𝑥 − Ω.       (21) 

Let us consider two possible movements of the representative 
point. In the first one, it moves along the fixed sliding line. In the 
second one, the representative point will be sliding on a moving 
switching curve. 
1. The sliding line remains fixed.  

Using the form of function 𝜅 given by Eq. (4), one can see that 
when the switching curve stops moving, it can be rewritten as 
follows 𝜅(t) = 𝛾τ0. Hence, κ̇(t) = 0 and (21) can be rewritten 
as follows: 

γ2τ0
2

2
≤ |ξ|ν𝑚𝑎𝑥 − Ω.          (22) 

Transforming the above equation one can get 

τ0 ≤
√2(|ξ|ν𝑚𝑎𝑥−Ω)

γ
.             (23) 

In order to derive the admissible set, we have to analyse the 
second scenario, when the sliding switching curve is in motion. 
2. The sliding line moves. 

Now the function κ takes the following form κ(τ) = γ𝜏, and its 
derivative can be expressed as follows κ̇(τ) = γ.Therefore, we 
can rewrite our boundary in the form: 

|γ√|Θ1(τ)| −
γ2τ2

2
| ≤ |ξ|ν𝑚𝑎𝑥 − Ω.         (24) 

Inequality (22) from the previous scenario shows that 

|
γ2τ2

2
| ≤ |ξ|ν𝑚𝑎𝑥 − Ω has to be true for τ ≤ τ0. Parameters 𝛾 

and 𝜏 are both positive; therefore, we will demand that inequality 

|γ√|Θ1(τ)|| ≤ |ξ|ν𝑚𝑎𝑥 − Ω         (25) 

is always true. The above equation can be transformed into the 

boundary of the parameter 𝛾: 

γ ≤
|ξ|ν𝑚𝑎𝑥−Ω

√|Θ1(0)|
.           (26) 

When the sliding line changes its position for the whole regu-
lation process, we check the edge of the admissible set and ob-
tain that 

γ ≤
|ξ|ν𝑚𝑎𝑥−Ω

2√|Θ1(0)|
.           (27) 

One can see that the second inequality is more strict; there-
fore, we have to demand its fulfilment. 

3.2. System’s velocity admissible set 

This subsection comprises the condition that has to be fulfilled 
to constrain the velocity of the system. We have to demand that 
for any τ ≥ 0  the following condition 

|Θ2(τ)| ≤ Θ2𝑚𝑎𝑥            (28) 

is satisfied. Let us start by considering the scenario when the 
switching curve moves. Hence, we will use the Eq. (17). We have 

to find the solution of the equation Θ2̇(τ) = 0. One can get 

γ√|Θ1(0)| −
3

4
γ2τ2 = 0.          (29) 

From the above equation, we get that the maximum absolute 
value of the system’s position is given as follows: 

maxτ>0|Θ2(τ)| =
4√3γ √|Θ1(0)|

34

9
.         (30) 

and is obtained at the time 

τ𝑚𝑎𝑥 =
2√3 √|Θ1(0)|

4

3√γ
.          (31) 

Therefore, the limitation on parameter 𝛾 can be written as follows: 

γ ≤
27Θ2𝑚𝑎𝑥

2

16√|Θ1(0)|
3
.           (32) 

In the second scenario, we do not have to consider the case 
when the sliding line is fixed. In this case, the maximum absolute 

value of the systems velocity is reached at the time τ0 due to the 
shape of the switching curve. So, in this scenario, the constraint 

on the parameter 𝛾 is given as in Eq. (32). 

3.3. Control signal and system’s velocity admissible set 

Taking into account both previous subsections one can write 

that the constraint on parameter γ in the case when the sliding 
line becomes fixed during the control process is given  as follows: 

γ ≤ min {
|𝜉|𝜈𝑚𝑎𝑥−Ω

√|Θ1(0)|
;
27Θ2𝑚𝑎𝑥

2

16√|Θ1(0)|
3
}.         (33) 

In the second scenario, when the switching curve moves, we 
have the following: 

γ ≤ min {
|𝜉|𝜈𝑚𝑎𝑥−Ω

2√|Θ1(0)|
;
27Θ2𝑚𝑎𝑥

2

16√|Θ1(0)|
3
}.         (34) 
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4. MINIMISATION OF ITAE QUALITY INDEX 

This section comprises the evaluation of dynamical perfor-
mance of the system by deriving and minimising the ITAE quality 
index in the presence of earlier mentioned constraints. This quality 
index takes the form: 

𝐼 = ∫ |Θ1(τ)|τdτ
∞

0
.                 (35) 

From the fact that we have proven that our controller provides 
that the representative point reaches the desired state in the finite 
time, the above equation is given as follows: 

𝐸 = ∫ |Θ1(τ)|τ𝑑τ
τ0
0

.          (36) 

In the first scenario, when the sliding line is fixed from some 
time of the control process, we use Eq. (13) and rewrite ITAE as 
follows: 

𝐸 = ∫ (√|Θ1(0)| −
γτ2

4
)
2

τ 𝑑τ
τ0
0

+ ∫ (√|Θ1(0)| +
γτ0
2

4
−

τ𝑓
τ0

γτ0τ

2
)
2

τ 𝑑τ.          (37) 

After some calculations, we can express the above equation 
in the form: 

𝐸 =
1

8
|Θ1(0)|τ0

2 −
1

48
γτ0

4√|Θ1(0)| +
1

768
γ2τ0

6 +
√|Θ1(0)|

3

3γ
+

|Θ1(0)|
2

3γ2τ0
2 .            (38) 

Our goal is to minimise this quality index. Therefore, we will 

equate the partial derivatives of ITAE with respect to 𝛾 and τ0 to 
zero as follows: 

∂𝐸

∂γ
= −

1

48
τ0
4√|Θ1(0)| +

1

384
γτ0

6 −
√|Θ1(0)|

3

3γ2
−

2|Θ1(0)|
2

3γ3τ0
2 ,   (39) 

∂𝐸

∂τ0
=

1

4
|Θ1(0)|τ0 −

1

12
γτ0

3√|Θ1(0)| +
1

128
γ2τ0

5 −
2|Θ1(0)|

2

3γ2τ0
3 . 

           (40) 

Equating Eq. (40) to zero one can get the real form of 𝛾 as a 

function of τ: 

γ = −
4√|Θ1(0)|

3τ0
2  ∨  γ =

4√|Θ1(0)|

τ0
2 .        (41) 

From the fact that 𝛾 and 𝜏 have to be positive, one can get 

that only the second value of 𝛾 in Eq. (41) belongs to the domain. 
Substituting this value to Eq. (39) and equating it to zero, we 
have: 

−
1

24
τ0
4√|Θ1(0)| = 0.         (42) 

Again, 𝜏0 is positive; therefore, the quality index has no sta-
tionary points, and as a consequence, the minimum is obtained on 
a boundary of the admissible set. In the second scenario, when 
the sliding line moves for the whole regulation process, the ITAE 
takes the form: 

𝐸 = ∫ (√|Θ1(0)| −
γτ2

4
)
2

τ 𝑑τ
τ𝑓
0

= |Θ1(0)|
τ𝑓
2

2
−

γτ𝑓
4

8
√|Θ1(0)| +

γ2τ𝑓
6

96
.          (43) 

Substituting the regulation time Eq. (18) one gets that the 
above equation can be rewritten as follows: 

𝐸 =
2√|Θ1(0)|

3

3γ
 .          (44) 

Hence, 

∂𝐸

∂γ
= −

2√|Θ1(0)|
3

3γ2
           (45) 

and we conclude that again ITAE has no stationary points; there-
fore, in both cases, the quality index is minimised on the boundary 
of the admissible set. 

Minimisation of ITAE with control signal constraintIn this 
subsection, the minimum value of ITAE with control signal limita-
tion will be derived. We have already shown that ITAE is mini-
mised on the boundary of the admissible set, i.e. on the lines 

γ =
|ξ|νmax−Ω

√|Θ1(0)|
 or τ0 =

√2(|ξ|νmax−Ω)

γ
. Substituting 𝛾 to the sec-

ond equation in Eq. (41), we get: 

τ0 = 2√
|Θ1(0)|

|ξ|ν𝑚𝑎𝑥−Ω
.          (46) 

From the fact that the maximum value of τ0 on this line is 

τ0 = √
2|Θ1(0)|

|ξ|ν𝑚𝑎𝑥−Ω
           (47) 

we obtain that the only stationary point does not belong to the 
admissible set. Therefore, the minimum value of ITAE will be 

obtained for the maximum possible value of τ0 given by Eq. (47). 
Now let us focus on deriving the optimal parameters of the switch-

ing curve on the line τ0 =
√2(|ξ|νmax−Ω)

γ
. Substituting this value 

to Eq. (38), one gets the following: 

𝐸 =
|Θ1(0)|(|ξ|ν𝑚𝑎𝑥−Ω)

4γ2
−

√|Θ1(0)|(|ξ|ν𝑚𝑎𝑥−Ω)
2

12α3
+

(|ξ|ν𝑚𝑎𝑥−Ω)
3

96γ4
+

√|Θ1(0)|
3

3γ
+

|Θ1(0)|
2

6(|ξ|ν𝑚𝑎𝑥−Ω)
.          (48) 

Calculating the derivative of the right-hand side of the above 
equation and equating it to zero, we obtain the only stationary 
point: 

γ = −
(1+ √2

3
+ √4
3

)(|ξ|ν𝑚𝑎𝑥−Ω)

2√|Θ1(0)|
.         (49) 

From the fact that both (|ξ|νmax − Ω) and |Θ1(0)| are posi-
tive, we get that Eq. (49) is negative. Therefore, again, minimum 
of ITAE is obtained on the boundary of admissible set and is equal 
to the following: 

𝐸 =
65|Θ1(0)|

2

96(|ξ|ν𝑚𝑎𝑥−Ω)
.          (50) 

Optimal switching curve parameters are given as follows: 

{

γ =
|ξ|ν𝑚𝑎𝑥−Ω

√|Θ1(0)|

τ0 = √
2|Θ1(0)|

|ξ|ν𝑚𝑎𝑥−Ω

.          (51) 

In the second case, when the sliding line moves for the whole 
control process, ITAE is also minimised for the maximum value of 

γ =
|ξ|νmax−Ω

2√|Θ1(0)|
 and is expressed as follows: 

𝐸 =
4|Θ1(0)|

2

3(|ξ|ν𝑚𝑎𝑥−Ω)
.           (52) 
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One can observe that E determined by Eq. (50) is smaller 
than the value of the same parameter given by Eq. (52). Hence, 
we can conclude that the optimal strategy is achieved when the 
sliding line moves, and after that, it becomes and remains fixed to 
the end of the control process. 

4.1. Minimisation of ITAE using system’s velocity constraint  

Again, we will start by considering the strategy, when the 
switching curve stops during the control process. We have already 
shown that the minimum of ITAE is obtained on the boundary of 
the admissible set. Hence, it is equal to the following equation: 

𝐸 =
928|Θ1(0)|

3

2187Θ2𝑚𝑎𝑥
2 .           (53) 

When the sliding line moves for the whole control process, 
then the minimum value of ITAE is written as follows: 

𝐸 =
32|Θ1(0)|

3

81Θ2𝑚𝑎𝑥
2 .           (54) 

One can easily conclude that the value of Eq. (54) is smaller 
than that of Eq. (53). Hence, ITAE is minimised when the sliding 
line moves for the whole control process. 

4.2. Minimisation of ITAE by using both control signal and 
system’s velocity constraints 

In this section, when the switching curve stops during the con-
trol process, we have to consider three possible cases: 

1.  𝛾 =
|𝜉|𝜈𝑚𝑎𝑥−Ω

√|Θ1(0)|
  and  𝜏0 = √

2|Θ1(0)|

|𝜉|𝜈𝑚𝑎𝑥−Ω
. In this case, the 

minimized ITAE is written as follows: 

𝐸 =
65|Θ1(0)|

2

96(|ξ|ν𝑚𝑎𝑥−Ω)
.          (55) 

2.  γ =
27Θ2max

2

16√|Θ1(0)|
3
 and τ0 =

8√3|Θ1(0)|

9Θ2max
. Now ITAE is given by 

𝐸 =
32|Θ1(0)|

3

81Θ2𝑚𝑎𝑥
2 .           (56) 

3. γ =
27Θ2max

2

16√|Θ1(0)|
3
 and τ0 =

16√2(|ξ|νmax−Ω)|Θ1(0)|
3

27Θ2max
2  In this 

case, the minimum value of ITAE can be expressed as fol-
lows: 

𝐸 =
64(|𝜉|𝜈𝑚𝑎𝑥−Ω)|Θ1(0)|

4

729Θ2𝑚𝑎𝑥
4 −

1024(|𝜉|𝜈𝑚𝑎𝑥−Ω)
2|Θ1(0)|

5

59049Θ2𝑚𝑎𝑥
6 +

2048(|𝜉|𝜈𝑚𝑎𝑥−Ω)
3|Θ1(0)|

6

1594323Θ2𝑚𝑎𝑥
8 +

16|Θ1(0)|
3

81Θ2𝑚𝑎𝑥
2 +

|Θ1(0)|
2

6(|𝜉|𝜈𝑚𝑎𝑥−Ω)
.      (57) 

Considering the second strategy, when the sliding line moves 
for the whole control process, we get the minimum value of ITAE 
as follows: 

𝐸 = max [
4|Θ1(0)|

2

3(|ξ|ν𝑚𝑎𝑥−Ω)
;
32|Θ1(0)|

3

81Θ2𝑚𝑎𝑥
2 ].        (58) 

One can observe that both Eqs (55) and (56) are always 
smaller than Eq. (58). Without knowing the values of initial param-
eters, we will not be able to state which of the three values such 
as Eqs (55), (56) or (57) will be the ITAE minimum. However, this 
value can be easily calculated when these parameters are given. 
The optimal strategy is the one: when the sliding line stops during 
the control process. 

5. SIMULATION EXAMPLE 

In this section, we will verify theoretical considerations by in-
troducing the simulation. We present the following system: 

{
Θ1̇(τ) = Θ2(τ)

Θ2̇(τ) =
1

Π
√|Θ1(τ)| arctan(Θ2(τ)) + Υ(τ) + ξν(τ)

.              (59) 

The representative point starts at (4, 0). From the shape of 
the switching curve and stable sliding motion, one can conclude 

that the maximum value of Ψ is 1 due to the fact that 
1

Π
arctan(Θ2(τ)) takes a value from [1;1]. Absolute value of 

external disturbances is limited by 3. These disturbances switch 
20 times per second between the minimum and maximum admis-
sible value in order to provide the most difficult feedback from the 

controller. Therefore, Ω takes a value 4. We select parameter 

ξ = 1. We set limits of control signal and systems velocity as 
follows νmax = 15 and Θ2max = 4. Now, let us consider the first 
case in our paper: when the control signal is constrained. The 
minimum value of ITAE is 

𝐸 = 0.9848           (60) 

and parameters related to the switching curve are given as fol-
lows: 

{
𝛾 =  5.5

τ0 = 0.8528𝑠
.           (61) 

Representative point reaches the demand state after τf =
1.2792s. From the control signal chart shown in Fig. 1, one can 
observe that it takes its maximum admissible value at the start of 
a control process. After that, it switches with an amplitude equal to 

the value of parameter Ω = 4. When the sliding line is in motion, 
the mean value of the input decreases monotonically. After time 
τ0, it stops, and the control signal switches between its minimum 

admissible value and −|νmax − 2Ω| in order to maintain the 
stable sliding motion. When it reaches the demand state, it takes 

values 4 or 4 to remain in it. System position shown in Fig. 2 
increases monotonically, and after time τf, its value is always 
equal to 0. System’s velocity (Fig. 3) starts rising due to the fact 
that the object must accelerate in order to reach the demand 
state. After some time, it peaks and starts decreasing. At the time 

τ0, we can see a non-differentiable point in our figure. It is the 
moment when the sliding line stops moving. Again, the demand 
state is reached in finite time τf. In the next scenario, when the 
absolute value of system’s velocity is bounded from above, we get 
the optimal results when the switching curve moves for the whole 
control process. Minimum value of ITAE is 

𝐸 =  1.5802           (62) 

and optimal parameter related to the speed of the switching curve 
is given as follows: 

γ = 3.3750           (63) 

In this case, due to the fact that the sliding line moves for the 
whole control process, the control signal decreases monotonically. 
From Fig. 4, one can observe that in this scenario, it exceeds the 

value 15 because now we do not require the control signal limi-
tation. After time τf = 1.5396 s, again it switches with amplitude 

Ω in order to maintain the representative point in a demand state. 
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Fig. 1. Control signal 

 
Fig. 2. System’s position 

 
Fig. 3. System’s velocity 

 
Fig. 4. Control signal 

System’s position (Figure 5) and velocity behave similarly as 
in the first case. However, one can observe from Fig. 6 that the 
limitation of the system’s velocity is fulfilled. This is the reason 
why in this case the regulation time is longer than that in the 
scenario when the control signal is constrained. The last case 

covers both control signal and velocity limitations. Minimised ITAE 
is given as follows: 

𝐸 =  1.5805.          (64) 

 
Fig. 5. System’s position 

 
Fig. 6. System’s velocity 

 
Fig. 7. Control signal 

 
Fig. 8. System’s position 
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Fig. 9. System’s velocity 

We can see that it is the highest value of all three scenarios, 
which is a logical outcome due to the fact that now we have to 
provide the fulfilment of not one but two limitations. Optimal 
switching curve parameters are as follows: 

{
𝛾 =  3.3750
τ0 = 0.8528𝑠

.          (65) 

The regulation time is τf = 1.5477. Again, one can observe 
that in order to satisfy both constraints, we select the minimum 

value of 𝛾 from both scenarios and the regulation time is the 
longest one from all three cases. From Figs. 7, 8 and 9, we can 
see that control signal and system state behave as we expected, 
and both control signal and velocity limitations are provided. The 
chattering visible in the control signal in Figs. 1, 4 and 7 could be 
reduced by changing the sign function of the sliding variable in Eq. 
(6) to a saturation function. In this paper, we have chosen not to 
do this to present the main contributions of our approach more 
clearly. Moreover, unfortunately, using the saturation function 
would result in a quasi-sliding motion instead of an ideal one. 
Namely, the state would be constrained to a close vicinity of the 
sliding line, not necessarily directly to it. 

 

6. CONCLUSIONS 

This work comprises the design of a sliding mode controller which 
can be applied for second-order, nonlinear systems. A switching  
curve that ensures the elimination of the reaching phase and the 
robustness for the whole control process is introduced. A finite 
time convergence of the representative point to the demand state 
is ensured. Control signal and system’s velocity are both con-
strained separately, and after that, this approach is combined. In 
order to achieve a satisfying dynamical performance of the sys-
tem, the ITAE quality index is minimised. It is noticeable that the 
main difficulty of the approach was considering all the possible 
scenarios and calculating the optimal parameter values for all of 
them. However, once this is done, the approach can be used fairly 
easily, using the final results presented above. Comparing the 
approach applied in this article with the one used in [14], one can 
conclude that IAE quality index treats the plant error similarly 
throughout the whole control process, while ITAE penalises the 
error more for further time periods. This results in obtaining slight-
ly higher initial values of error for ITAE quality index. However, 
these values decrease more rapidly. 
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