PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Image Processing to Predict Compressive Behavior of Aluminum Foam

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An image processing technique was used to model the internal structure of aluminum foam in finite element analysis in order to predict the compressive behavior of the material. Finite element analysis and experimental tests were performed on aluminum foam with densities of 0.2, 0.25, and 0.3 g/cm3. It was found that although the compressive strength predicted from the finite element analysis was higher than that determined experimentally, the predicted compressive stress-strain curves exhibited a tendency similar to those determined from experiments for both densities. However, the behavior of the predicted compressive stress-strain curves was different from the experimental one as the applied strain increased. The difference between predicted and experimental stress-strain curves in a high strain range was due to contact between broken aluminum foam walls by the large deformation.
Twórcy
autor
  • Department of Mechanical Engineering, KyungHee University, Yongin, Korea
autor
  • CAE Technology Group, Production Engineering Center, LS Cable 27,Gongdan-ro 140beon-gil, Gunpo-si, Gyeonggi-do 453-831 Korea
autor
  • Department of Mechanical Engineering, KyungHee University, Yongin, Korea
Bibliografia
  • [1] D. P. Mondal, M. D. Goel, S. Das, Compressive deformation and energy absorption characteristics of closed cell aluminumfly ash particle composite foam, Materials Science and Engineering A 507, 102-109 (2009).
  • [2] A. E. Markaki, T. W. Clyne, Energy absorption during failure of layered metal foam/ceramic laminates, Materials Science and Engineering A 323, 260-269 (2002).
  • [3] S. Asavavisithchai, D. Slater, A. R. Kennedy, Effect of bonding strength on the energy absorption of al foam-filled cylindrical tube, Journal of Materials Science 39, 5873-5875 (2004).
  • [4] C. S. Lee, D. G. Lee, Manufacturing of composite sandwich robot structures using the co-cure bonding method, Composite Structures 65, 307-318 (2004).
  • [5] S. Santosa, J. Bangart, T. Wierzbicki, Bending crush resistance of partially foam-filled sections, Advanced Engineering Materials 2, 223-227 (2000).
  • [6] S. P. Santosa, T. Wierzbicki, A. G. Hanssen, M. Langseth, Experimental and numerical studies of foam-filled sections, International Journal of Impact Engineering 24, 509-531 (2000).
  • [7] P. S. Liu, Tensile fracture behavior of foamed metallic materials, Materials Science and Engineering A 384, 352-354 (2004).
  • [8] J. W. Hutchinson, M. Y. He, Buckling of cylindrical sandwich shells with metal foam cores, International Journal of Solids and Structures 37, 6777-6794 (2000).
  • [9] A. Salimon, Y, Brechet, M. F. Ashby, A. L. Greer, Potential applications for steel and titanium metal foams, Journal of Materials Science 40, 5793-5799 (2005).
  • [10] M. D. Demetriou, G. Duan, C. Veazey, K. D. Blauwe, W.L. Johnson, Amorphous Fe-based metal foam, Scripta Materialia 57, 9-12 (2007).
  • [11] H. J. Chung, K. Y. Rhee, B. S. Han, Y. M. Ryu, Plasma treatment using nitrogen gas to improve bonding strength of adhesively bonded aluminum foam/aluminum composite, Journal of Alloys and Compounds 459, 196-202 (2008).
  • [12] H. J. Chung, K. Y. Rhee, B. C. Lee, J. H. Lee, Effect of oxygen plasma treatment on the bonding strength of CFRP/aluminum foam composite, Journal of Alloys and Compounds 481, 214-219 (2009).
  • [13] L. J. Gibson, M. F. Ashby, Cellular solids, Pergamon Press, Oxford, UK, 2001.
  • [14] I. Ch. Konstantinidis, D. P. Papadopoulos, H. Lefakis, D. N. Tsipas, Model for determining mechanical properties of aluminum closed-cell foams, Theoretical and Applied Fracture Mechanics 43,157-167 (2005).
  • [15] P. Kenesei, Cs. Kádár, Zs. Rajkovits, J. Lendvai, The influence of cell-size distribution on the plastic deformation in metal foams, Scripta Materialia 50, 295-300 (2004).
  • [16] A. Sassov, E. Cornelis, D. van Dyck, Non-destructive 3D Investigation of metal foam microstructure, Material Wissenschaft and Werkstofftechnik 31, 571-573 (2000).
  • [17] T. Ohgaki, H. Toda, M. Kobayashi, K. Uesugi, T. Kobayashi, M. Niinomi, T. Akahori, K. Makii, Y. Aruga, In-situ highresolution x-ray CT observation of compressive and damage behavior of aluminum foams by local tomography technique, Advanced Engineering Materials 8, 473-475 (2006).
  • [18] Y. Liu, W. Gong, X. Zhang, Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam, Computational Materials Science, 91, 223-230 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2f47589-abb6-4324-adb5-9adbc8a3903e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.