PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Why FETs detect a THz signal at a frequency far beyond their amplifying capabilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Field-effect transistors (FETs) are efficient detectors of THz radiation. Despite over three decades of research, controversy still exists regarding the detection mechanism. The article attempts to solve this problem systemically. Existing approaches to modeling THz detection are critically reviewed, including plasmonic, resistive mixing, hot carrier and thermal models. Limitations and inconsistencies of the first two approaches, along with some classical physics principles and experiments conducted, were identified. These include the facts that some models were formulated independently of material relaxation time constraints, and the plasmonic approach does not take into account the conditions for the formation of surface plasmon-polarons and does not describe the case of p-type devices (hole plasmons have never been experimentally recorded). Relevant measurements and theoretical considerations illustrate the inadequacy of these models. As a result of this analysis, thermoelectric models are expected to explain THz sensing by FETs.
Rocznik
Strony
art. no. e151989
Opis fizyczny
Bibliogr. 28 poz., rys., fot., wykr.
Twórcy
  • Institute of Microelectronics and Photonics, Lukasiewicz Research Center, al. Lotnikow 32/46, 02-668 Warsaw, Poland
  • Institute of Microelectronics and Photonics, Lukasiewicz Research Center, al. Lotnikow 32/46, 02-668 Warsaw, Poland
  • Institute of Microelectronics and Photonics, Lukasiewicz Research Center, al. Lotnikow 32/46, 02-668 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Dyakonov, M. I. & Shur, M. S. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 43, 1640-1645 (1996). https://doi.org/10.1109/16.536809.
  • [2] Öjefors, E., Pfeiffer, U. R., Lisauskas, A. & Roskos, H. G. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE J. Solid-State Circuits 44, 1968 (2009). https://doi.org/10.1109/JSSC.2009.2021911.
  • [3] Boppel, S. et al. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Tech. 60, 3834-843 (2012). https://doi.org/10.1109/TMTT.2012.2221732.
  • [4] Castilla, S. et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction. Nano Lett. 19, 2765-2773 (2019). https://doi.org/10.1021/acs.nanolett.8b04171.
  • [5] Ryzhii, V. et al. Graphene vertical hot-electron terahertz detectors. J. Appl. Phys. 116, 114504 (2014). https://doi.org/10.1063/1.4895738.
  • [6] Cai, X. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotech. 9, 814-819 (2014). https://doi.org/10.1038/nnano.2014.182.
  • [7] Auton, G. et al. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett. 17, 7015-7020 (2017). https://doi.org/10.1021/acs.nanolett.7b03625.
  • [8] Ryzhii, V., Otsuji, T. & Shur, M. Graphene based plasma-wave devices for terahertz applications. Appl. Phys. Lett. 116, 140501 (2020). https://doi.org/10.1063/1.5140712.
  • [9] Caridad, J. M. et al. Room-temperature plasmon-assisted resonant THZ detection in single-layer graphene transistors. Nano Lett. 24, 935-942 (2024). https://doi.org/10.1021/acs.nanolett.3c04300.
  • [10] Mateos, J. & Gonzalez, T. Plasma enhanced terahertz rectification and noise in InGaAs HEMTs. IEEE Trans. Terahertz Sci. Technol. 2, 562-569 (2012). https://doi.org/10.1109/TTHZ.2012.2209970.
  • [11] García-Sánchez, S. et al. Analysis of the THz responsivity of AlGaN/GaN HEMTs by means of Monte Carlo simulations. IEEE Trans. Electron Devices 71, 4556-4562 (2024). https://doi.org/10.1109/TED.2024.3413713.
  • [12] Marczewski, J., Tomaszewski, D., Zaborowski, M. & Bajurko, P. Thermoemission-based model of THz detection and its validation-JLFET case studies. IEEE Trans. Terahertz Sci. Technol. 12, 633-647 (2022). https://doi.org/10.1109/TTHZ.2022.3191836.
  • [13] Hwang, E. H., Rossi, E. & Das Sarma, S. Theory of thermopower in two-dimensional graphene. Phys. Rev. B 80, 235415 (2009). https://doi.org/10.1103/PhysRevB.80.235415.
  • [14] Ludwig, F. et al. Terahertz detection with graphene FETs: Photothermoelectric and resistive self-mixing contributions to the detector response. ACS Appl. Electron. Mater. 6, 2197-2212 (2024). https://doi.org/10.1021/acsaelm.3c01511.
  • [15] Mayr, J. The Boltzmann Equation and H-Theorem. https://www.thphys.uni-heidelberg.de/~wolschin/statsem21_4s.pdf (Accessed on July 15, 2024).
  • [16] de Groot, S. R. & Mazur, P. Non-Equilibrium Thermodynamics. (New York: Dover Publications Inc., 1984).
  • [17] Seeger, K. Relaxation Times in Semiconductors. in Electronic Materials (eds. Hannay, N. B. & Colombo, U.) 107-126 (Springer, Boston, 1973).
  • [18] Yong, L. Relaxation time limits problem for hydrodynamic models in semiconductor science. Acta Math. Sci. 27, 437-448 (2007). https://doi.org/10.1016/S0252-9602(07)60044-7.
  • [19] Palankovski, V. Bipolar Transistors. (Technischen Universität Wien, 2000). https://www.iue.tuwien.ac.at/phd/palankovski/
  • [20] Fox, M. Optical Properties of Solids. 2nd edition. (Oxford Press, 2010).
  • [21] Allen, S. J. Jr., Tsui, D. C. & Logan, R. A. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980-983 (1977). https://doi.org/10.1103/PhysRevLett.38.980.
  • [22] Zaborowski, M., Marczewski, J., Tomaszewski, D. & Zagrajek, P. THz Detection in p-Type FETs. in Proc. of 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 1-2 (IEEE, 2023). https://doi.org/10.1109/IRMMW-THz57677.2023.10299265.
  • [23] Zagrajek, P. et al. Time resolution and dynamic range of field-effect transistor-based Terahertz detectors. J. Infrared Milli. Terahertz Waves 40, 703-719 (2019), https://doi.org/10.1007/s10762-019-00605-0.
  • [24] Kopyt, P., Salski, B., Marczewski, J., Zagrajek, P. & Lusakowski, J. Parasitic effects affecting responsivity of sub-THz radiation detector built of a MOSFET. J. Infared Milli. Terahertz Waves 36, 1059-1075 (2015). https://doi.org/10.1007/s10762-015-0188-y.
  • [25] Roskos, H. G. et al. THz Detection with Field-Effect Transistors: The Role of Plasma Waves and of Thermoelectric Contributions. in Proc. of 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 1-1 (IEEE, 2018). https://doi.org/10.1109/IRMMW-THz.2018.8510444.
  • [26] Bialek, M., Czapkiewicz, M., Wrobel, J., Umansky, V. & Lusakowski, J. Plasmon dispersions in high electron mobility terahertz detectors. Appl. Phys. Lett. 104, 263514 (2014). https://doi.org/10.1063/1.4886970.
  • [27] Bulusu, A. & Walker, D. G. Review of electronic transport models for thermoelectric materials. Superlattices Microstruct. 44, 1-36 (2008). https://doi.org/10.1016/j.spmi.2008.02.008.
  • [28] Paz-Martínez, G. P. et al. A closed-form expression for the frequency-dependent microwave responsivity of transistors based on the I–V curve and s-parameters. IEEE Trans. Microw. Theory Tech. 72, 415-420 (2024). https://doi.org/10.1109/TMTT.2023.3291391.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2f30798-487f-45f3-8947-709fbb239812
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.