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Abstract   

The free damped vibrations of thin (Kirchhoff-Love) plates equipped with viscoelastic dampers are considered 

in the paper. It is assumed that the dampers are described according to the generalized rheological model. 
Influence of temperature on the parameters of dampers is taken into account using the frequency-temperature 

correspondence principle. Isotropic and rectangular plates are analysed in numerical tests included in this 

study. The natural frequencies and non-dimensional damping ratios are determined for these plates by solving 
the non-linear eigenproblem using the continuation method. The Finite Element Method is used to determine 

the stiffness matrix and the mass matrix occurring in the considered eigenproblem. The results of exemplary 

numerical calculations are presented and discussed at the end of this paper. 
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1. Introduction 

Equipping a structure with vibration dampers is one of the ways of reducing its 

susceptibility to dynamic influences. In structures subjected to vibrations, it is often 

necessary to change their dynamic parameters, first of all, the natural frequencies.  

Devices that make it possible may be viscoelastic dampers discussed in this paper. The 

study of structures equipped with this type of dampers is the subject of many scientific 

works. In [1] the vibrations of shear frames are considered taking into account the 

influence of temperature on the properties of viscoelastic dampers installed on the 

structure. The authors of [2] investigate the behavior of a viscoelastic material e.g. under 

the influence of temperature increase. The method of solving the equation of motion of a 

structure with viscoelastic dampers is discussed in [3] where the continuation method is 

explained and used for numerical tests.  

The free damped vibration analysis of rectangular thin (Kirchhoff-Love) plates with 

viscoelastic dampers is considered in the paper. It is assumed that the dampers are 

attached to the plate with one end in selected points of its surface and the other end to the 

rigid base. All dampers have the same properties within one plate. A generalized 

rheological model is used to describe the dampers. Their parameters depend on the 

temperature according to the frequency-temperature correspondence principle that is 

discussed e.g. in [1,2,4,5]. The Finite Element Method (FEM) is used to describe a plate 



Vibrations in Physical Systems 2020, 31, 2020310  (2 of 8) 

 

deformation. The rectangular four-node finite elements described in [6] are used for 

discretization of the plate surface in accordance with FEM principles. 

2. Description of the viscoelastic damper model 

In this paper, a description of viscoelastic damper according to a generalized rheological 

model is assumed. This model is discussed, inter alia, in [1,3], while in [3] one can also 

find another, alternative model called the fractional.  

 

 

Figure 1. Viscoelastic damper according to the generalized rheological model 

 

Using the classic description, the viscoelastic damper can be shown graphically as in 

Fig. 1. It can be seen from the figure that the damper consists of 𝑚 + 1 elements. Each 

of these elements contains a viscous part with the constant 𝑐𝑗 (dashpot) and an elastic 

part (spring) with the constant 𝑘𝑗 where 𝑗 = 0,1,2, … , 𝑚. Element number zero is called 

a Kelvin element and the remaining 𝑚 elements are Maxwell elements.  

The time-dependent force in the damper, denoted as 𝑢(𝑡), is the sum of the forces 

occurring in the individual elements, i.e. 

𝑢(𝑡) = ∑ 𝑢𝑗(𝑡)

𝑚

𝑗=0

. (1) 

For 𝑗 = 0, the force in the Kelvin element is expressed as the following formula: 

𝑢0(𝑡) = 𝑘0∆𝑞(𝑡) + 𝑐0∆𝑞̇(𝑡), (2) 

where 𝑘0, 𝑐0 are respectively the stiffness and the damping parameters of the Kelvin 

element and ∆𝑞(𝑡) = 𝑞𝑙(𝑡) − 𝑞𝑘(𝑡) is the relative displacement of the damper (i.e. the 

difference of the displacements of the ends 𝑙 and 𝑘 of the damper). For 𝑗 = 1,2, … , 𝑚, 

the force in the 𝑗-th Maxwell element satisfies the following formula: 

𝜈𝑗𝑢𝑗(𝑡) + 𝑢̇𝑗(𝑡) = 𝑘𝑗Δ𝑞̇(𝑡) (3) 

where 𝜈𝑗 =
𝑘𝑗

𝑐𝑗
 is the quotient of the stiffness and damping coefficients of the 𝑗-th 

Maxwell element.  
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Using Laplace transform (ℒ-transform) with zero initial conditions for formulas  

(2) and (3) causes them to transform into forms (4) and (5), respectively. 

𝑢̅0(𝑠) = 𝑘0Δ𝑞̅(𝑠) + 𝑠𝑐0Δ𝑞̅(𝑠) (4) 

𝑢̅𝑗(𝑠) =
𝑘𝑗𝑠

𝜈𝑗 + 𝑠
Δ𝑞̅(𝑠) (5) 

In the above formulas, 𝑠 is an ℒ-transform variable and 𝑢̅𝑗(𝑠), Δ𝑞̅(𝑠) are respectively  

ℒ-transforms of the time-dependent force function 𝑢𝑗(𝑡) in the 𝑗-th damper element and 

the relative displacement function ∆𝑞(𝑡) of the damper. Laplace transform of the total 

force 𝑢(𝑡) in the damper takes the following form: 

𝑢̅(𝑠) = ∑ 𝑢̅𝑗(𝑠)

𝑚

𝑗=0

= (𝑘0 + 𝑠𝑐0 + ∑
𝑘𝑗𝑠

𝜈𝑗 + 𝑠

𝑚

𝑗=1

) Δ𝑞̅(𝑠). (6) 

Formula (6) can be written in a shorter form as below: 

𝑢̅(𝑠) = (𝐾𝑟 + 𝐶𝑟(𝑠) + 𝐺𝑟(𝑠))Δ𝑞̅(𝑠), (7) 

where  

𝐾𝑟 = 𝑘0;  𝐶𝑟(𝑠) = 𝑠𝑐0;  𝐺𝑟(𝑠) = ∑
𝑘𝑗𝑠

𝜈𝑗 + 𝑠

𝑚

𝑗=1

. (8) 

3. Description of the dependence of dampers parameters on temperature 

The stiffness and damping parameters 𝑘𝑗 , 𝑐𝑗 of the individual elements constituting the 

viscoelastic damper attached to the structure depend on the temperature.  

Let the damper parameters be known for a certain reference temperature 𝑇0 and have 

values 𝑘̅𝑗, 𝑐𝑗̅ . Then, for a different temperature 𝑇 the dampers have parameters 𝑘𝑗, 𝑐𝑗  that 

can be determined e.g. using the frequency-temperature correspondence principle. A 

more detailed explanation of this principle is contained e.g. in [1,4].  

According to [1], the following relationships can be written for a damper performing 

excited harmonic vibrations: 

Δ𝑞(𝑡) = Δ𝑄𝑒𝑖𝜆𝑡; 𝑢(𝑡) = 𝑈𝑒𝑖𝜆𝑡;  𝑢𝑗(𝑡) = 𝑈𝑗𝑒𝑖𝜆𝑡; 𝑗 = 0,1,2, … , 𝑚, (9) 

where 𝜆 is the frequency of excitation, Δ𝑄, 𝑈 and 𝑈𝑗 are the amplitudes of the relative 

displacement of the damper, the total force in the damper and the force in the 𝑗-th 

damper element, respectively. After substituting (9) to (1) – (3), the following 

relationship is obtained: 

𝑈 = [𝑘0 + 𝑖𝜆𝑐0 + ∑
𝑖𝜆𝑘𝑗

𝜈𝑗 + 𝑖𝜆

𝑚

𝑗=1

] Δ𝑄 = 𝐾∗(𝜆)Δ𝑄 = [𝐾′(𝜆) + 𝑖𝐾′′(𝜆)]Δ𝑄. (10) 

In the formula above, 𝐾∗(𝜆) is the complex modulus. Its real part 𝐾′(𝜆) is called the 

storage modulus and the imaginary part 𝐾′′(𝜆) is called the loss modulus. From formula 

(10) it follows that: 

𝐾′(𝜆) = 𝑘0 + ∑ 𝑘𝑗

𝜆2

𝜈𝑗
2 + 𝜆2

𝑚

𝑗=1

;  𝐾′′(𝜆) =  𝜆𝑐0 + ∑ 𝑘𝑗

𝜆𝜈𝑗

𝜈𝑗
2 + 𝜆2

𝑚

𝑗=1

. (11) 
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In accordance with the frequency-temperature correspondence principle, it is possible to 

link 𝐾′(𝜆, 𝑇) and 𝐾′′(𝜆, 𝑇) modules, determined for different temperatures, using the 

following relationships [1]: 

𝐾′(𝜆, 𝑇) = 𝐾′(𝛼𝑇𝜆, 𝑇0);  𝐾′′(𝜆, 𝑇) =  𝐾′′(𝛼𝑇𝜆, 𝑇0). (12) 

where 𝛼𝑇 is the shift factor relating 𝑇 to 𝑇0. 

Using (11) and (12) it can be written that 

𝑘0 + ∑ 𝑘𝑗

𝜆2

𝜈𝑗
2 + 𝜆2

𝑚

𝑗=1

= 𝑘̅0 + ∑ 𝑘̅𝑗

𝛼𝑇
2𝜆2

𝜈̅𝑗
2 + 𝛼𝑇

2𝜆2

𝑚

𝑗=1

;   

𝜆𝑐0 + ∑ 𝑘𝑗

𝜆𝜈𝑗

𝜈𝑗
2 + 𝜆2

𝑚

𝑗=1

= 𝛼𝑇𝜆𝑐0̅ + ∑ 𝑘̅𝑗

𝛼𝑇𝜆𝜈̅𝑗

𝜈̅𝑗
2 + 𝛼𝑇

2𝜆2

𝑚

𝑗=1

, 

(13a) 

 

 

(13b) 

It follows from the above formulas that the damper model constants at temperature 𝑇 can 

be expressed as below: 

𝑘𝑗 = 𝑘̅𝑗;  𝑐𝑗 = 𝑐𝑗̅𝛼𝑇;  𝑗 = 0,1,2, … , 𝑚. (14) 

The shift factor 𝛼𝑇 is the function of the temperature 𝑇 and can be expressed by the 

William-Landel-Ferry formula given e.g. in [1,4]:  

log10 𝛼𝑇 =
−𝐶1(𝑇 − 𝑇0)

𝐶2 + 𝑇 − 𝑇0

, (15) 

where 𝐶1, 𝐶2 are constants that are determined experimentally. 

4. Description of the plate model according to the Finite Element Method 

In the Finite Element Method, the center plane of the plate is divided into a finite 

number of elements. In this study, rectangular plate finite elements of plQ4 type, 

described in [6], are used. Each such finite element is characterized by four nodes with 

three degrees of freedom at each node. Thus, the deformation vector 𝒘𝑖
𝑒  of the 𝑖-th node 

in the finite element 𝑒 is defined by three quantities: deflection 𝑤𝑖  and two angles of 

rotation 𝜑𝑖𝑥 and 𝜑𝑖𝑦 , so it can be written that  

𝒘𝑖
𝑒 = [𝑤𝑖   𝜑𝑖𝑥   𝜑𝑖𝑦]

𝑇
= [𝑤𝑖   

𝜕𝑤𝑖

𝜕𝑦
  −

𝜕𝑤𝑖

𝜕𝑥
]

𝑇

; 𝑖 = 1,2,3,4. (16) 

The displacement field within each finite element is approximated with a fourth order 

polynomial 𝑤𝑒(𝑥, 𝑦) of two variables 𝑥 and 𝑦, the formula of which is given in [6]. This 

polynomial has twelve unknown coefficients 𝛼𝑘 (𝑘 = 1,2,3, … ,12) due to the number of 

degrees of freedom in one finite element.  

For each finite element 𝑒, twelve shape functions 𝑁𝑘
𝑒(𝑥, 𝑦) (𝑘 = 1,2,3, … ,12) are 

determined. Each shape function 𝑁𝑘
𝑒(𝑥, 𝑦) corresponds to the 𝑘-th degree of freedom of 

the element and is determined based on the displacement field 𝑤𝑒(𝑥, 𝑦) formula. For 

this, an appropriate system of twelve equations is solved. Knowing all the shape 

functions of an element, the displacement field within the element 𝑒 can be expressed as 

a linear combination of the shape functions 𝑁𝑘
𝑒(𝑥, 𝑦) with coefficients being nodal 

displacements, i.e.  

𝑤𝑒(𝑥, 𝑦) = 𝑵𝑒𝒘𝑒 , (17) 

where 𝒘𝑒 = [𝒘1
𝑒   𝒘2

𝑒   𝒘3
𝑒   𝒘4

𝑒]𝑇 and 𝑵𝑒 = [𝑁1
𝑒   𝑁2

𝑒   𝑁3
𝑒  …  𝑁12

𝑒 ]. 
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On the basis of the knowledge of the shape functions, it is possible to determine the 

element stiffness matrix 𝑲𝑒 and the consistent inertia matrix 𝑴𝒆 of the element. The 

formulas for determining these matrices are given in [6] and [7], respectively. The 

dimension of the stiffness and inertia matrices 𝑲𝒆 and 𝑴𝒆 is 12 × 12 due to the twelve 

degrees of freedom of a single finite element.  

5. The equation of motion of the plate with dampers and its solution 

The equation of motion of a structure with viscoelastic dampers can be written in the 

following form [1,3]: 

 

𝑴𝒒̈(𝑡) + 𝑪𝒒̇(𝑡) + 𝑲𝒒(𝑡) = 𝒇(𝑡). (18) 

In the above equation, 𝑲, 𝑴 and 𝑪 denote the global plate stiffness, inertia and damping 

matrices, respectively. The dimension of these matrices is 3𝑛 × 3𝑛, where 𝑛 is the total 

number of nodes of all finite elements making up the plate. There are also two vectors in 

the equation: 𝒒(𝑡) is the 3𝑛-dimensional plate nodal displacement vector and 𝒇(𝑡) is the 

vector of the forces acting on the plate from dampers. It is assumed in the equation that 

the structural plate is not loaded with additional excitation forces. 

The matrices 𝑲 and 𝑴 appearing in equation (18) arise as a result of the aggregation 

process of element matrices 𝑲𝑒 and 𝑴𝒆 respectively. In numerical tests included in this 

paper, the damping matrix 𝑪 is omitted.  

After applying the Laplace transform with zero initial conditions, equation (18) takes 

the following algebraic form: 

(𝑠2𝑴 + 𝑠𝑪 + 𝑲)𝒒̅(𝑠) = 𝒇̅(𝑠), (19) 

where 𝒒̅(𝑠) is the ℒ-transform of 𝒒(𝑡) and 𝒇̅(𝑠) can be expressed as follows: 

𝒇̅(𝑠) = − ∑(𝐾𝑟 + 𝐶𝑟(𝑠) + 𝐺𝑟(𝑠))𝐋r𝒒̅(𝑠)

𝑛𝑑

𝑟=1

. (20) 

In the formula above, 𝑛𝑑 is the total number of dampers attached to the plate at selected 

nodes of a finite element mesh and 𝐋r is a global matrix indicating the location of the  

𝑟-th damper within the plate. It is a diagonal matrix with one in the row representing the 

translational degree of freedom along which the 𝑟-th damper works. Formulas for 

determining 𝐾𝑟 , 𝐶𝑟(𝑠) and 𝐺𝑟(𝑠) for the 𝑟-th damper are given in chapter 2. 

After substituting (20) to (19), the ℒ-transform of the equation (18) of motion of a 

plate with viscoelastic dampers takes the form: 

(𝑠2𝑴 + 𝑠𝑪 + 𝑪𝑑(𝑠) + 𝑲 + 𝑲𝑑 + 𝑮𝑑(𝑠))𝒒̅(𝑠) = 𝟎, (21) 

where  

𝑲𝑑 = ∑ 𝐾𝑟𝐋r

𝑛𝑑

𝑟=1

;  𝑪𝑑(𝑠) = ∑ 𝐶𝑟(𝑠)𝐋r

𝑛𝑑

𝑟=1

;  𝑮𝑑(𝑠) = ∑ 𝐺𝑟(𝑠)𝐋r

𝑛𝑑

𝑟=1

. (22) 

Equation (21) is a nonlinear eigenproblem which is solved by eigenvalues 𝑠 and 

eigenvectors 𝒒̅(𝑠). This problem can be solved e.g. according to the algorithm of the 

continuation method described in more detail in [3] and used in this paper. Other 

methods of solving this problem are described e.g. in [5].  
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In the case of equation (21), the components containing the variable 𝑠 in the first 

power are multiplied by the parameter 𝜅 ∈ [0; 1]. The equation can then be written as 

𝒉1(𝒒̅, 𝑠) = 𝑫(𝑠)𝒒̅(𝑠) = 𝟎, (23) 

where  

𝑫(𝑠) = 𝑠2𝑴 + 𝜅𝑠𝑪 + 𝜅𝑪𝑑(𝑠) + 𝑲 + 𝑲𝑑 + 𝜅𝑮𝑑(𝑠). (24) 

In order for the elements of the eigenvector 𝒒̅ corresponding to the eigenvalue 𝑠 to be 

determined unambiguously, an additional normalizing equation of the following form is 

introduced into the matrix equation (23): 

ℎ2(𝒒̅, 𝑠) =
1

2
𝒒̅(𝑠)𝑇

𝜕𝑫(𝑠)

𝜕𝑠
𝒒̅(𝑠) − 𝑎 = 𝟎, (25) 

where 𝑎 has a given value. 

In the first step of the continuation method, in equation (23) the parameter 𝜅1 = 0 is 

assumed and the generalized eigenproblem is solved. As a result of solving this problem, 

the first approximations of eigenvalues 𝑠1
(1)

, 𝑠2
(1)

, … , 𝑠3𝑛
(1)

 and eigenvectors 

𝒒̅1
(1)

, 𝒒̅2
(1)

, … , 𝒒̅3𝑛
(1)

 are obtained. On their basis, the parameter 𝑎𝑗
(1)

= 𝑠𝑗
(1)

(𝒒̅𝑗
(1)

)
𝑇

𝑴𝒒̅𝑗
(1)

, 

where 𝑗 = 1,2, … ,3𝑛, is determined. 

In the 𝑙-th step (𝑙 = 2,3,4, …) the increment ∆𝜅𝑙 is assumed and the Newton method 

is used to solve the system of equations (23) with the additional equation (25). For this 

purpose, the system of incremental equations of the Newton method is solved using 𝜅𝑙 =

𝜅𝑙−1 + ∆𝜅𝑙, 𝑠𝑗
(𝑘−1)

, 𝒒̅𝑗
(𝑘−1)

 and 𝑎𝑗
(𝑘−1)

. Increments 𝛿𝒒̅ and 𝛿𝑠 are obtained from these 

equations and the following are calculated: 

𝑠𝑗
(𝑘)

= 𝑠𝑗
(𝑘−1)

+ 𝛿𝑠; 𝒒̅𝑗
(𝑘)

= 𝒒̅𝑗
(𝑘−1)

+ 𝛿𝒒̅; 𝑎𝑗
(𝑘)

=
1

2
(𝒒̅𝑗

(𝑘)
)

𝑇 𝜕𝑫(𝑠)

𝜕𝑠
𝒒̅𝑗

(𝑘)
. (26) 

Successive approximations of the 𝑗-th eigenvalue and 𝑗-th eigenvector in the 𝑙-th step 

of the algorithm are calculated until the desired accuracy of the final result is achieved. 

The final values of 𝑠𝑗
(𝑘)

, 𝒒̅𝑗
(𝑘)

 and 𝑎𝑗
(𝑘)

 obtained in the 𝑙-th step are taken as starting 

values for the step 𝑙 + 1 and the new parameter 𝜅𝑙+1 = 𝜅𝑙 + ∆𝜅𝑙+1. 

The procedure described above is carried out up to the value of the parameter 𝜅 = 1, 

when the final eigenvalues and eigenvectors for the nonlinear eigenproblem (21) are 

obtained.  

The obtained eigenvalues of the problem (21) are complex numbers of the form 𝑠𝑗 =

𝜇𝑗 + 𝑖𝜂𝑗. On this basis, the 𝑗-th natural frequency 𝜔𝑗 of the structure and the non-

dimensional damping ratio 𝛾𝑗 of the 𝑗-th mode of vibration are determined from the 

formulas: 

𝜔𝑗
2 = 𝜇𝑗

2 + 𝜂𝑗
2;  𝛾𝑗 = −

𝜇𝑗

𝜔𝑗

. (27) 

6. Numerical example 

The square isotropic plate fixed on one edge is considered. The material properties of the 

plate are:  E = 205 GPa, vp = 0.3 and 7850p = kg/m3. The plate dimensions are 

𝑙𝑥 × 𝑙𝑦 × ℎ = (2.0 × 2.0 × 0.01)m. Three viscoelastic dampers are mounted in the 
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middle and at both ends of the free edge of the plate. The damper contains one Kelvin 

element and one Maxwell element with the following parameters determined at the 

reference temperature 𝑇0 = 0,2℃ based on [2]: 

𝑘0 = 108,56 N/m; 𝑐0 = 0 Ns/m; 𝑘1 = 19968,09 N/m; 𝑐1 = 229,63 Ns/m. (28) 

The influence of temperature on the values of the above-mentioned parameters is taken 

into account by applying the frequency-temperature correspondence principle. In order 

to calculate the value of the shift function from the formula (15), the values of the 

constants 𝐶1 = 19,5 and 𝐶2 = 80,2 are adopted according to [2]. 

Obtained natural frequencies and non-dimensional damping ratios for the plate are 

presented in Table 1 and Table 2 for different temperatures. In Table 3, the dynamic 

characteristics of the plate are given for 𝑇 = 2℃ and for its various discretizations. 

The dependence of the first plate natural frequency and non-dimensional damping 

ratio of the first mode of vibration on temperature is presented graphically in the Fig. 2. 

Table 1. Natural frequencies of the plate for different temperatures 

Mode 
Natural frequencies ω [rad/s] for the FEM mesh 14 × 14. 

𝑇 = 0℃ 𝑇 = 2℃ 𝑇 = 4℃ 𝑇 = 6℃ 𝑇 = 8℃ 𝑇 = 10℃ 𝑇 = 12℃ 𝑇 = 14℃ 

1 14,877 13,687 13,586 13,574 13,572 13,572 13,572 13,572 

2 36,577 33,365 33,027 32,986 32,980 32,980 32,980 32,979 

3 84,186 82,753 82,442 82,400 82,395 82,394 82,394 82,394 

4 110,496 106,621 105,338 105,155 105,129 105,126 105,125 105,125 

5 123,193 120,756 119,868 119,736 119,717 119,715 119,714 119,714 

Table 2. Non-dimensional damping ratios of the plate for different temperatures 

Mode 
Non-dimensional damping ratios 𝛾 [-] for the FEM mesh 14 × 14. 

𝑇 = 0℃ 𝑇 = 2℃ 𝑇 = 4℃ 𝑇 = 6℃ 𝑇 = 8℃ 𝑇 = 10℃ 𝑇 = 12℃ 𝑇 = 14℃ 

1 0,371343 0,120328 0,042116 0,015551 0,006004 0,002418 0,001013 0,000441 

2 0,170925 0,069103 0,024636 0,009105 0,003516 0,001416 0,000594 0,000258 

3 0,020028 0,012620 0,004872 0,001819 0,000703 0,000283 0,000119 0,000052 

4 0,031183 0,028617 0,012004 0,004530 0,001754 0,000707 0,000296 0,000129 

5 0,017372 0,016512 0,007103 0,002692 0,001043 0,000420 0,000176 0,000077 

 

  

Figure 2. The first natural frequency (a) and the non-dimensional damping ratio (b) of 

the first mode of vibration versus temperature (FEM mesh 14 × 14) 

a) b) 
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Table 3. Dynamic characteristics of the plate for 𝑇 = 2℃ and its different discretizations 

Mode 

Solution FEM for 𝑇 = 2℃ and various FEM meshes 

Natural frequencies ω [rad/s] Non-dimensional damping ratios 𝛾 [-] 

10 × 10 14 × 14 20 × 20 10 × 10 14 × 14 20 × 20 

1 13,686 13,687 13,687 0,120300 0,120328 0,120343 

2 33,370 33,365 33,362 0,069145 0,069103 0,069079 

3 82,841 82,753 82,706 0,012607 0,012620 0,012628 

4 106,547 106,621 106,660 0,028478 0,028617 0,028690 

5 120,770 120,756 120,745 0,016559 0,016512 0,016483 

7. Conclusions  

The analysis of the influence of temperature on the dynamic characteristics of the isotropic 

plate with viscoelastic dampers was carried out in the paper. The numerical tests included 

there showed that a significant decrease in the plate natural frequencies occurs with a slight 

increase in temperature in relation to the reference temperature. At significant temperatures, 

the frequencies hardly change and reach a certain constant value. The non-dimensional 

damping ratios at temperatures higher than 𝟏𝟎℃ tend to zero and thus the dampers lose their 

damping properties. The convergence tests carried out in the study showed that the use of  

a 𝟏𝟎 × 𝟏𝟎 mesh is sufficient and too high mesh density extends the computation time 

considerably. 
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