Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the analysis of the three-dimensional strain state for the cogging process of a forging (type: shaft) of the X6CrNiTi18-10 austenitic steel with the application of the finite element method. The results of the thermal-mechanical simulation of the hot cogging process on flat and shaped anvils, taking under consideration boundary conditions applied in industrial practice, are presented. In the research, a new method of forging, consisting in the introduction of the initial forging of the stock on anvils which have convex work surfaces, and further forging on shaped anvils, was applied. The results of the calculations make it possible to determine effective strain distribution, effective stress, mean stresses and temperature in the volume of a forging. The solution was supplemented by the addition of the model of microstructure development in the course of deformation. The conducted research constitutes the basis for determining the best possible technological process of the initial forging of a cast ingot, and provide the possibility of forecasting the deformations and parameters of the microstructure.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
393--401
Opis fizyczny
Bibliogr. 16 poz., rys., wzory
Twórcy
autor
- Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-200 Częstochowa, 21 Armii Krajowej Av., Poland
Bibliografia
- [1] H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, Z. Zhou, Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps, Materials and Design 67, 165-172 (2015).
- [2] H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, Z. Zhou, Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps, Materials and Design 67, 165-172 (2015).
- [3] W. Zhang, S. Sun, D. Zhao, B. Wang, Z. Wang, W. Fu, Hot deformation behavior of a Nb-containing 316 LN stainless steel, Materials and Design 32, 4173-4179 (2011).
- [4] G. Liu, Y. Han, Z. Shi, J. Sun, D. Zou, G. Qiao, Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: A study with processing map, Materials and Design 53, 662-672 (2014).
- [5] G. Z. Quan, J. T. Liang, Y. Y. Liu, G. C. Luo, Y. Shi, J. Zhou, Identification of optimal deforming parameters from a large range of strain, strain rate and temperature for 3Cr20Ni10W2 heat-resistant alloy, Materials and Design 52, 593-601 (2013).
- [6] Y. Kim, J. Cho, W. Bae, Efficient forging process to improve the closing effect of the inner void on an ultra-large ingot. Journal of Materials Processing Technology 211, 1005-1013 (2011).
- [7] M. Kukuryk, The influence of technological parameters on the effectiveness of the cogging process, Hutnik – Wiadomości Hutnicze 81, 646-651 (2014).
- [8] N. T. Switzner, C. J. Van Tyne, M. C. Mataya, Effect of forging strain rate and deformation temperature on the mechanical properties of warm-worked 304L stainless steel, Journal of Materials Processing Technology 210, 998-1007 (2010).
- [9] S. K. Choi, M. S. Chun, C. J. Van-Tyne, Y. H. Moon, Optimization of open die forging of round shapes using FEM analysis, Journal of Materials Processing Technology 172, 88-95 (2006).
- [10] J. Brnic, G. Turkalj, M. Canadija, S. Krscanski, M. Brcic, D. Lanc, Deformation behaviour and material properties of austenitic heat--resistant steel X15CrNiSi25-20 subjected to high temperatures, Materials and Design 69, 219-2239 (2015).
- [11] H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, Z. Zhou, Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel, Materials and Design 64, 374-380 (2014).
- [12] J. Fluhrer, Deform 3D User’s Manual Version 6.0, Scientific Forming Technologies Corporation, Columbus, OH (2006).
- [13] M. Kukuryk, Analysis of deformation and microstructural evolution in the hot forging of the Ti-6Al-4V alloy, Archives of Metallurgy and Materials 60, 1639-1647 (2015).
- [14] Y. C. Lin, X. M. Chen, D. X. Wen, M. S. Chen, A physically – based constitutive model for a typical nickel-based superalloy, Computational Materials Science 83, 282-289 (2014).
- [15] G. Z. Quan, A. Mao, G. C. Luo, J. T. Liang, D. S. Wu, J. Zhou, Constitutive modelling for the dynamic recrystallization kinetics of as – extruded 3Cr20Ni10W2 heat- resistant alloy based on stress-strain data, Materials and Design 52, 98-107 (2013).
- [16] Y. C. Lin, M. S. Chen, Numerical simulation and experimental verification of microstructure evolution in a three-dimensional hot upsetting process, Journal of Materials Processing Technology 209, 4578-4583 (2009).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2ef5307-7214-4884-8ed4-66f89b8a4a5e