Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let n ∈ N. An element x ∈ E is called a norming point of P ∈ P(n E) if YxY = ² and SP(x)S = YPY, where P(n E) denotes the space of all continuous n-homogeneous polynomials on E. For P ∈ P(n E), we define Norm(P) = x ∈ E ∶ x is a norming point of P. Norm(P) is called the norming set of P. We classify Norm(P) for every P ∈ P(_ d∗(², w)_ ), where d∗(², w)_ = R_ with the octagonal norm of weight x < w < ².
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
25--31
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
Bibliografia
- [1] R. M. Aron, C. Finet, and E. Werner, Some remarks on norm-attaining n-linear forms, Function spaces (Edwardsville, IL, 1994) 172 (1995), 19-28.
- [2] R. M. Aron and M. Klimek, Supremum norms for quadratic polynomials, Arch. Math. 76 (2001), 73-80, DOI 10.1007/s000130050544.
- [3] E. Bishop and R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98, DOI 10.1090/S0002-9904-1961-10514-4.
- [4] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. Lon don Math. Soc. 54 (1996), 135-147, DOI 10.1112/jlms/54.1.135.
- [5] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer-Verlag, London 1999, DOI 10.1007/978-1-4471-0869-6.
- [6] M. Jimenez Sevilla and R. Paya, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), 99-112, DOI 10.4064/sm-127-2-99-112.
- [7] S. G. Kim, Fe unit ball of P( 2d∗(1,w) 2 ), Math. Proc. R. Ir. Acad. 111 (2011), no. 2, 79-94, DOI 10.3318/pria.2011.111.1.9.
- [8] S. G. Kim, Fe norming set of a polynomial in P( 2 l 2 ∞), Honam Math. J. 42 (2020), no. 3, 569-576, DOI 10.5831/HMJ.2020.42.3.569.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2ea1e2d-c3be-4240-b77b-69350071102b