PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An epitome on encapsulation of probiotics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Nanotechnology is one of the highly evolving fields of research having immense potential in various fields of healthcare sectors. The very advent of nanotechnology lies in its ability to serve as a targeted drug delivery system. The introduction of a new branch namely bionanotechnology has further expanded the scope, especially in the diagnostics and treatment of various diseases. Probiotics being a natural source with a plethora of beneficial properties have been investigated actively in recent days. Probiotics administered into the digestive system have been shown to promote gut health by increasing the microbial balance in the gut. However, the bioavailability of such administered probiotics remains a major concern. These probiotics are protected through microencapsulation techniques, which encapsulate them in small capsules. Several nanoparticles with varied dimensions, forms, surfaces and composites have recently been investigated for probiotic microencapsulation. This has been used for various therapeutic applications, such as drug delivery. This review gives an insight on various materials and strategies used for probiotic encapsulation. Design/methodology/approach: The main aim of this review is to give a perception of the different types of methods of probiotic encapsulation. Findings: This review implies the significance of probiotics and subsequent active release in the gastrointestinal system. Different sections of this review paper, on the other hand, may offer up new opportunities for comprehensive research in the field of microencapsulation for boosting probiotic viability and also talks about the various encapsulating materials that has been employed. Originality/value: This review emphasizes more perceptions about the ongoing and imminent techniques for encapsulating probiotics.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
  • Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam-603103, Chennai, Tamil Nadu, India
autor
  • Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam-603103, Chennai, Tamil Nadu, India
Bibliografia
  • [1] M.T. El-Saadony, M. Alagawany, A.K. Patra, I. Kar, R. Tiwari, M.A.O. Dawood, K. Dhama, H.M.R. Abdel- Latif, The functionality of probiotics in aquaculture: An overview, Fish and Shellfish Immunology 117 (2021) 36-52. DOI: https://doi.org/10.1016/j.fsi.2021.07.007
  • [2] L. Depoorter, Y. Vandenplas, Probiotics in Pediatrics. A Review and Practical Guide, Nutrients 13/7 (2021) 2176. DOI: https://doi.org/10.3390/nu13072176
  • 3] R.G. Kerry, J.K. Patra, S. Gouda, Y. Park, H.-S. Shin, G. Das, Benefaction of probiotics for human health: A review, Journal of Food and Drug Analysis 26/3 (2018) 927-939. DOI: https://doi.org/10.1016/j.jfda.2018.01.002
  • [4] N. Yeşilyurt, B. Yilmaz, D. Ağagündüz, R. Capasso, Involvement of probiotics and postbiotics in the immune system modulation, Biologics 1/2 (2021) 89- 110. DOI: https://doi.org/10.3390/biologics1020006
  • [5] B. Bottari, V. Castellone, E. Neviani. Probiotics and Covid-19, International Journal of Food Sciences and Nutrition 72/3 (2021) 293-299. DOI: https://doi.org/10.1080/09637486.2020.1807475
  • [6] K. Śliżewska, P. Markowiak-Kopeć, W. Śliżewska, The Role of Probiotics in Cancer Prevention, Cancers 13/1 (2020) 20. DOI: https://doi.org/10.3390/cancers13010020
  • [7] W. Song, A.C. Anselmo, L. Huang, Nanotechnology intervention of the microbiome for cancer therapy, Nature Nanotechnology 14/12 (2019) 1093-1103. DOI: https://doi.org/10.1038/s41565-019-0589-5
  • [8] A. Durazzo, A. Nazhand, M. Lucarini, A.G. Atanasov, E.B. Souto, E. Novellino, R. Capasso, A. Santini, An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics, International Journal of Molecular Sciences 21/7 (2020) 2285. DOI: https://doi.org/10.3390/ijms21072285
  • [9] D. Caneus, Nanotechnology and its Partnership with Synbiotics, Journal of Nanomedicine Research 6/1 (2017) 00142. DOI: https://doi.org/10.15406/jnmr.2017.06.00142
  • [10] S.M. Bhatt, A Critical Review On Nano-Food Packaging and Its Applications. Journal of Commercial Biotechnology 25/3 (2020) 3-17. DOI: https://doi.org/10.5912/jcb882
  • [11] M. Prabaharan, J.F. Mano, Chitosan-based particles as controlled drug delivery systems, Drug Delivery 12/1 (2005) 41-57. DOI: https://doi.org/10.1080/10717540590889781
  • [12] S. Razavi, S. Janfaza, N. Tasnim, D.L. Gibson, M. Hoorfar, Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria, Nanoscale Advances 3/10 (2021) 2699-2709. DOI: https://doi.org/10.1039/D0NA00952K
  • [13] R. Atraki, M. Azizkhani, Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model, Innovative Food Science and Emerging Technologies 72 (2021) 102750. DOI: https://doi.org/10.1016/j.ifset.2021.102750
  • [14] M. Chávarri, I. Marañón, M.C. Villarán, Encapsulation technology to protect probiotic bacteria, in: E.C. Rigobelo (ed.), Probiotics, IntechOpen, London, 2012. DOI: https://doi.org/10.5772/50046
  • [15] G.K. Gbassi, T. Vandamme, Probiotic encapsulation technology: from microencapsulation to release into the gut, Pharmaceutics 4/1 (2012) 149-163. DOI: https://doi.org/10.3390/pharmaceutics4010149
  • [16] A. Lathuilière, N. Mach, B.L. Schneider, Encapsulated cellular implants for recombinant protein delivery and therapeutic modulation of the immune system, International Journal of Molecular Sciences 16/5 (2015) 10578-10600. DOI: https://doi.org/10.3390/ijms160510578
  • [17] P. Ebrahimnezhad, M. Khavarpour, S. Khalili, Survival of Lactobacillus Acidophilus as probiotic bacteria using chitosan nanoparticles, International Journal of Engineering 30/4 (2017) 456-463.
  • [18] A. Mawad, Y.A. Helmy, A.G. Shalkami, D. Kathayat, G. Rajashekara, E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro, Applied Microbiology and Biotechnology 102/24 (2018) 10675-10690. DOI: https://doi.org/10.1007/s00253-018-9417-3
  • [19] S. Sathyabama, M. Ranjith kumar, P. Bruntha devi, R. Vijayabharathi, V. Brindha priyadharisini, Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment, LWT - Food Science and Technology 57/1 (2014) 419-425. DOI: https://doi.org/10.1016/j.lwt.2013.12.024
  • [20] C. Yucel Falco, F. Amadei, S.K. Dhayal, M. Cárdenas, M. Tanaka, J. Risbo, Hybrid coating of alginate microbeads based on protein-biopolymer multilayers for encapsulation of probiotics, Biotechnology Progress 35/3 (2019) e2806. DOI: https://doi.org/10.1002/btpr.2806
  • [21] A. Sohail, M.S. Turner, A. Coombes, T. Bostrom, B. Bhandari, Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method, International Journal of Food Microbiology 145/1 (2011) 162-168. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.12.007
  • [22] A.R. Donthidi, R.F. Tester, K.E. Aidoo, Effect of lecithin and starch on alginate-encapsulated probiotic bacteria, Journal of Microencapsulation 27/1 (2010) 67- 77. DOI: https://doi.org/10.3109/02652040902982183
  • [23] M. Chávarri, I. Marañón, R. Ares, F.C. Ibáñez, F. Marzo, M.C. Villarán, Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions, International Journal of Food Microbiology 142/1-2 (2010) 185-189. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.06.022
  • [24] Q. Luan, W. Zhou, H. Zhang, Y. Bao, M. Zheng, J. Shi, H. Tang, F. Huang, Cellulose-Based Composite Macrogels from Cellulose Fiber and Cellulose Nanofiber as Intestine Delivery Vehicles for Probiotics, Journal of Agricultural and Food Chemistry 66/1 (2018) 339-345. DOI: https://doi.org/10.1021/acs.jafc.7b04754
  • [25] W. Li, Y. Zhu, F. Ye, B. Li, X. Luo, S. Liu, Probiotics in cellulose houses: Enhanced viability and targeted delivery of Lactobacillus plantarum, Food Hydrocolloids 62 (2017) 66-72. DOI: https://doi.org/10.1016/j.foodhyd.2016.07.019
  • [26] W.H. Gunzburg, M.M. Aung, P. Toa, S. Ng, E. Read, W.J. Tan, E.M. Brandtner, J. Dangerfield, B. Salmons, Efficient protection of microorganisms for delivery to the intestinal tract by cellulose sulphate encapsulation, Microbial Cell Factories 19/1 (2020) 216. DOI: https://doi.org/10.1186/s12934-020-01465-3
  • [27] S. Chakraborty, Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review, Journal of Carbohydrate Chemistry 36/1 (2017) 1-19. DOI: https://doi.org/10.1080/07328303.2017.1347668
  • [28] Q.U. Riaz, T. Masud, Recent trends and applications of encapsulating materials for probiotic stability, Critical Reviews in Food Science and Nutrition 53/3 (2013) 231-244. DOI: https://doi.org/10.1080/10408398.2010.524953
  • [29] J. Burgain, C. Gaiani, M. Linder, J. Scher, Encapsulation of probiotic living cells: From laboratory scale to industrial applications, Journal of Food Engineering 104/4 (2011) 467-483. DOI: https://doi.org/10.1016/j.jfoodeng.2010.12.031
  • [30] H. Liu, M. Xie, S. Nie, Recent trends and applications of polysaccharides for microencapsulation of probiotics, Food Frontiers 1/1 (2020) 45-59. DOI: https://doi.org/10.1002/fft2.11
  • [31] X.Y. Li, X.G. Chen, D.S. Cha, H.J. Park, C.S. Liu, Microencapsulation of a probiotic bacteria with alginate-gelatin and its properties, Journal of Microencapsulation 26/4 (2009) 315-324. DOI: https://doi.org/10.1080/02652040802328685
  • [32] A. Abedinia, F. Alimohammadi, F. Teymori, N. Razgardani, M.R. Saeidi Asl, F. Ariffin, A. Mohammadi Nafchi, N. Huda, J. Roslan, Characterization and Cell Viability of Probiotic/Prebiotics Film Based on Duck Feet Gelatin: A Novel Poultry Gelatin as a Suitable Matrix for Probiotics, Foods 10/8 (2021) 1761. DOI: https://doi.org/10.3390/foods10081761
  • [33] G.R. Rama, D. Dullius, W.D. Agnol, V.M. Esquerdo, D.N. Lehn, C.F.V. de Souza, Ricotta whey supplemented with gelatin and collagen for the encapsulation of probiotic lactic acid bacteria, Food Science and Technology, Campinas 41/3 (2021) 576- 586. DOI: https://doi.org/10.1590/fst.19720
  • [34] J.L. Patarroyo, E. Fonseca, J. Cifuentes, F. Salcedo, J.C. Cruz, L.H. Reyes, Gelatin-Graphene Oxide Nanocomposite Hydrogels for Kluyveromyces lactis Encapsulation: Potential Applications in Probiotics and Bioreactor Packings, Biomolecules 11/7 (2021) 922. DOI: https://doi.org/10.3390/biom11070922
  • [35] D. Kavitake, S. Kandasamy, P.B. Devi, P.H. Shetty, Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review, Food Bioscience 21 (2018) 34-44. DOI: https://doi.org/10.1016/j.fbio.2017.11.003
  • [36] M.G. Sajilata, R.S. Singhal, P.R. Kulkarni, Resistant starch – a review, Comprehensive Reviews in Food Science and Food Safety 5/1 (2006) 1-17. DOI: https://doi.org/10.1111/j.1541-4337.2006.tb00076.x
  • [37] F. Zhu, Encapsulation and delivery of food ingredients using starch based systems, Food Chemistry 229 (2017) 542-552. DOI: https://doi.org/10.1016/j.foodchem.2017.02.101
  • [38] J.D. Hoyos-Leyva, L.A. Bello-Pérez, J. Alvarez- Ramirez, H. S. Garcia, Microencapsulation using starch as wall material: A review, Food Reviews International 34/2 (2018) 148-161. DOI: https://doi.org/10.1080/87559129.2016.1261298
  • [39] H. Li, M.S. Turner, S. Dhital, Encapsulation of Lactobacillus plantarum in porous maize starch, LWT 74 (2016) 542-549. DOI: https://doi.org/10.1016/j.lwt.2016.08.019
  • [40] A. Šipailienė, S. Petraitytė, Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms, Probiotics and Antimicrobial Proteins 10/1 (2018) 1- 10. DOI: https://doi.org/10.1007/s12602-017-9347-x
  • [41] G. Zayed, Y.H. Roos, Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage, Process Biochemistry 39/9 (2004) 1081-1086. DOI: https://doi.org/10.1016/S0032-9592(03)00222-X
  • [42] G. Broeckx, D. Vandenheuvel, I.J. Claes, S. Lebeer, F. Kiekens, Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics, International Journal of Pharmaceutics 505/1-2 (2016) 303-318. DOI: https://doi.org/10.1016/j.ijpharm.2016.04.002
  • [43] E. Padan, E. Bibi, M. Ito, T.A. Krulwich, Alkaline pH homeostasis in bacteria: new insights, Biochimica et Biophysica Acta (BBA) - Biomembranes 1717/2 (2005) 67-88. DOI: https://doi.org/10.1016/j.bbamem.2005.09.010
  • [44] S. Khem, D.M. Small, B.K. May, The behaviour of whey protein isolate in protecting Lactobacillus plantarum, Food Chemistry 190 (2016) 717-723. DOI: https://doi.org/10.1016/j.foodchem.2015.06.020
  • [45] I. Trabelsi, W. Bejar, D. Ayadi, H. Chouayekh, R. Kammoun, S. Bejar, R. Ben Salah, Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. International Journal of Biological Macromolecules 61 (2013) 36-42. DOI: https://doi.org/10.1016/j.ijbiomac.2013.06.035
  • [46] Y. He, Z. Wu, L. Tu, Y. Han, G. Zhang, C. Li, Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate, Applied Clay Science 109-110 (2015) 68-75. DOI: https://doi.org/10.1016/j.clay.2015.02.001
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2e7d809-94ee-4008-bf42-c09aac92cfe9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.