PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularity theorems for harmonic functions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The regularity theorem is a result stating that functions which have extremal growth or decrease in the given class display a regular behaviour. Such theorems for linearly invariant families of analytic functions are well known. We prove regularity theorems for some classes of harmonic functions. Many presented statements are new even in the analytic case.
Wydawca
Rocznik
Strony
25--36
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Mathematics, Petrozavodsk State University, Lenina Ave. 33, 185910 Petrozavodsk, Russia
  • Faculty of Mathematics, Petrozavodsk State University, Lenina Ave. 33, 185910 Petrozavodsk, Russia
Bibliografia
  • [1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Inequalities for quasiconformal mappins in space, Paci c J. Math. 160 (1993), no. 1, 1–18.
  • [2] L. Bieberbach, Einführung in die konforme Abbildung, Sammlung Göschen 768/786a, De Gruyter, Berlin, 1967.
  • [3] D. M. Campbell, Applications and proofs of a uniqueness theorems for linear invariant families of finite order, Rocky Mountain J. Math. 4 (1974), no. 4, 621–634.
  • [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25.
  • [5] E. G. Ganenkova, A regularity theorem in linearly invariant families of functions (in Russian), Tr. Petrozavodsk. Gos. Univ. Ser. Mat. 13 (2006), 70–115.
  • [6] E. G. Ganenkova, A theorem on the regularity of decrease in linearly invariant families of functions, Russian Math. 51 (2007), no. 2, 71–74.
  • [7] S. Y. Graf, Sharp estimation of the Jacobian in linearly and affine-invariant families of harmonic mappings (in Russian), Tr. Petrozavodsk. Gos. Univ. Ser. Mat. 14 (2007), 31–38.
  • [8] S. Y. Graf, Regularity theorems for the Jacobian in linearly and affine invariant families of harmonic mappings (in Russian), Appl. Funct. Anal. Approx. Theory 35 (2014), 10–21.
  • [9] G. H. Hardy Divergent Series. Oxford University Press, Oxford, 1973.
  • [10] W. K. Hayman, Some applications of the trans- finite diameter to the theory of functions, J. Anal. Math. 1 (1951), 155–179.
  • [11] W. K. Hayman, Multivalent Functions, Cambridge University Press, Cambridge, 1994.
  • [12] J. Krzyz, On the maximum modulus of univalent function, Bull. Pol. Acad. Sci. Math. CI (1955), no. 3, 203–206.
  • [13] E. Neuman, Optimal bounds for certain bivariate means, Issues Anal. 3 (2014), 35–43.
  • [14] C. Pommerenke, Linear-invariante familien analytischer funktionen I, Math. Ann. 155 (1964), 108–154.
  • [15] L. E. Shaubroek, Subordination of planar harmonic functions, Complex Var. 41 (2000), 163–178.
  • [16] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. 42 (1990), 237–248.
  • [17] M. Sobczak-Knec, V. V. Starkov and J. Szynal, Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian, Ann. Univ. Mariae Curie-Sklodowska. Sectio A. Math. LXV (2012), no. 2, 191–202.
  • [18] V. V. Starkov, Regularity theorems for universal linearly invariant families of functions (in Russian), SERDIKA Bulgarian Math. J. 11 (1985) 299–318.
  • [19] V. V. Starkov, Harmonic locally quasiconformal mappings, Ann. Univ. Mariae Curie-Sklodowska. Sectio A. Math. XLIX (1995), no. 14, 183–187.
  • [20] V. V. Starkov, Application of the linear invariance idea in the theory of harmonic mappings. New order (in Russian), in: Modern Problems of Function Theory and Its Applications, Saratov State University, Saratov (2004), 173.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2e025f8-8d1a-4b33-a7f0-f6ca97992650
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.