PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystal plasticity models accounting for twinning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Modele plastyczności kryształów uwzględniające mechanizm bliźniakowania
Języki publikacji
EN
Abstrakty
EN
Different approaches to account for twinning in crystal plasticity models are discussed. In particular, three main issues related to this mechanism of plastic deformation are addressed: modelling of texture evolution in the presence of twinning, impact of slip-twin interactions on hardening laws formulation and influence of a layered substructure on the macroscopic response of materials. Some of the discussed modelling tools are illustrated with use of the example of titanium aluminide.
PL
W pracy przedyskutowano istniejące metody pozwalające na uwzględnienie bliźniakowania w ramach modelu plastyczności kryształów. W szczególności przeanalizowano trzy zasadnicze problemy wymagające rozwiązania w przypadku modelowania metali i stopów, w których mamy do czynienia z tym mechanizmem deformacji plastycznej: modelowanie rozwoju tektury krystalograficznej, wpływ sprzężeń zachodzących pomiędzy mechanizmami poślizgu i bliźniakowania na sformułowanie prawa umocnienia oraz wpływ tworzącej się substruktury lamelarnej (płytkowej) na makroskopową odpowiedź materiału. Niektóre z omawianych podejść zostały zilustrowane na przykładzie związku międzymetalicznego Ti-Al.
Słowa kluczowe
Wydawca
Rocznik
Strony
436--451
Opis fizyczny
Bibliogr. 66 poz., rys.
Twórcy
  • Institute of Fundamental Technological Research (IPPT PAN), Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • Agnew, S. R., Yoo, M. H., Tomé, C. N., 2001, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Mater, 49, 4277-4289.
  • Anand, L., 2004, Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strain, Comput. Methods Appl. Mech. Engrg., 193, 5359-5383.
  • Appel, F., Wagner, R., 1998, Microstructure and deformation of two-phase ᵧ-titanium aluminides, Mater. Sci. Eng R., 22, 187-268.
  • Asaro, R. J., 1983, Crystal plasticity, J. Applied Mechanics, 50, 921-934.
  • Asaro, R. J., Needleman, A., 1985, Textured development and strain hardening in rate dependent polycrystals, Acta metall., 33 (6), 923-953.
  • Asgari, S., El-Danaf, E., Kalidindi, S. R., Doherty, R. D., Necker, C, 1997, Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fee alloys that form deformation twins, Metal. Mater Trans., A 28, 1781-1795.
  • Bartel, T., Hackl, K., 2008, A novel approach to the modelling of single-crystalline materials undergoing martensitic phase-transformations. Mater. Sci. Eng., A 481-482. 371-375.
  • Battels, A., Kestlcr, H., Clemens, H., 2002, Deformation behavior of differently processed ᵧ-titanium aluminides, Mater. Sci. Eng., A 329-331, 153-162.
  • Basinski, Z. S., Szczerba, M. S., Niewczas, M., Embury, J. D., Basinski, S. J., 1997, The transformation of slip dislocations during twinning of copper-aluminum alloy crystals, Rev. Metall,. 94, 1037-1043.
  • Beyerlein, I., McCabe, R., C.N.Tome, 2011, Effect of micro-structure on the nucleation of deformation twins in poly-crystalline high-purity magnesium: A multi-scale modeling study, J.. Mech. Phys. Solids, 59, 988-1003.
  • Capolungo, L., Beyerlein, I., Kaschner, G., Tome, C, 2009, On the interaction between slip dislocations and twins in HCP Zr, Mater. Sci. Eng., A 42-51, 42-51.
  • Chin, G. Y., Hosford, W. F., Mendorf, D. R., 1969, Accomodation of constrained deformation in fee. metals by slip and twinning, Proc. R. Soc, A 309, 433-456.
  • Christian, J. W., Mahajan, S., 1995, Deformation twinning, Progress in Materials Science, 39, 1-157.
  • Dancette, S., Delannay, L., Renard, K., Melchior, M., Jacques, P., 2012, Crystal plasticity modeling of texture development and hardening in TWIP steels, Acta Mater, 60, 2135-2145.
  • Duggan, B. J., Hatherly, M., Hutchinson, W. B., Wakefield, P. T., 1978, Deformation structures and textures in cold-rolled 70:30 brass, Metal. Sci., 12, 343-351.
  • El-Danaf, E., Kalidindi, S. R., Doherty, R. D., 2001, Influence of deformation path on the strain hardening behavior and microstructure evolution in low sfe fee metals, Int. J. Plasticity, 17, 1245-1265.
  • El-Danaf, E., Kalidindi, S. R., Doherty, R. D., Necker, C, 2000, Deformation texture transition in brass: critical role of micro-scale shear bands, Acta Mater, 48, 2665-2673.
  • English, A. T., Chin, G. Y., 1965, On the variation of wire texture with stacking fault energy in f.c.c. metals and alloys, Acta Metall., 13,1013.
  • Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc, A 241, 376-396.
  • Fischer, F. D., Schaden, T., Appel, F., Clemens, H., 2003, Mechanical twins, their development and growth, Eur. J. Mech. A/Solids, 22, 709-726.
  • Gambin, W., 1992, Refined analysis of elastic-plastic crystals, Int. J. Solids Struct, 29 (16), 2013-2021.
  • Havner, K. S., 1992, Finite Plastic Deformation of Crystalline Solids, Cambridge University Press, Cambridge.
  • Heye,W.,Wassermann, G., 1968, The formation of the rolling textures in fee metals by slip and twinning, Scripta Metall.. 2. 205-207.
  • Homayonifar, M., Mosler, J., 2012, Efficient modeling of microstructure evolution in magnesium by energy minimization, Int. J. Plasticity, 28, 1-20.
  • Kalidindi, S. R., 1998, Incorporation of twinning in crystal plasticity models, J. Mech. Phys. Solids, 46, 267-290.
  • Kalidindi, S. R., 2001, Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fee metals, Int. J. Plasticity, 17, 8370-860.
  • Kalidindi, S. R., Bronkhorst, C. A., Anand, L., 1992, Crystallographic texture evolution in bulk deformation processing of fee metals, J. Mech. Phys. Solids, 40, 537-569.
  • Karaman, I., Sehitoglu, H., Beaudoin, A. J., Chumlyakov, Y. I., Maier, H. J., Tomé, C. N., 2000, Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip, Acta Mater, 48, 2031-2047.
  • Kaschner, G. C, Tomé, C. N., Beyerlein, I. J., Vogel, S. C, Brown, D.W., McCabe, R. J., 2006, Role of twinning in the hardening response of zirconium during temperature reloads, Acta Mater, 54, 2887-2896.
  • Kaschner, G. C, Tomé, C. N., McCabe, R. J., Misra, A., Vogel, S. C, Brown, D. W., 2007, Exploring the dislocation/twin interactions in zirconium, Mater. Sci. Eng., A 463, 122-127.
  • KMM NoE, 2007a, DNRT l-1.2-3(a) Complete results of experimental approach and characterization. Internal report, LMT Cachan, University of Metz, IPPT PAN and IMZ PAN.
  • KMM NoE, 2007b, DNRT l-1.2-4(c) Texture measurements and microstructure determination of TiAl, FeAl materi-als processed by partners. Internal report, Universita Politécnica delle Marche (A. Manescu and A. Giuliani).
  • Kocks, U. F., Tomé, C. N., Wenk, H.-R., 2000, Texture and Anisotropy, II Edition. Cambridge University Press, Cambridge.
  • Kowalczyk-Gajewska, K., 2010, Modelling of texture evolution in metals accounting for lattice reorientation due to twinning, Eur. J. Mech. Solids/A, 29, 28-41.
  • Kowalczyk-Gajewska, K., 2011, Micromechanical modelling of metals and alloys of high specific strength, IFTR Reports 1/2011, Warszawa.
  • Lebensohn, R. A., Tomé, C. N., 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater, 41, 2611-2624.
  • Lebensohn, R. A., Uhlenhut, H., Hartig, C, Mecking, H., 1998, Plastic flow of ᵧ-TiAl-based polysynthetically twinned crystals: micromechanical modelling and experimental validation, Acta Mater, 46, 229-236.
  • Leffers, T., Juul Jensen, D., 1991, The relation between texture and microstructure in rolled fee materials, Text. Microstruct., 14-18,933-952.
  • terials Science, 54, 351-396.
  • Leffers, T., Van Houtte, P., 1989, Calculated and experimental orientation distributions of twin lamellae in rolled brass, Acta Metall, 37, 1191-1198.
  • Lou, X. Y., Li, M., Boger, R. K., Agnew, S. R., Wagoner, R. H., 2007. Hardening evolution of AZ31B Mg sheet. Int. J. Plasticity 23, 44-86.
  • Mahajan, S., Chin, G. Y., 1973, Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals, Acta Metall., 21, 173-179.
  • Marketz, W. T., Fischer, F. D., Kaufmann F., Dehm, G., Bidlingmaier, T., Wanner, A., Clemens, E, 2002, On the role of twinning during room temperature deformation of ᵧ -TiAl based alloys, Mater. Sci. Eng., A 329-331, 177-183.
  • Masson, R., Bornert, M., Suquet, P., Zaoui, A., 2000, An affine formulation for the prediction of the effective properties of non-linear composites and polycrystals, J. Mech. Phys. Solids, 48, 1203-1227.
  • McCabe, R. J., Proust, G., Cerreta, E. K., Misra, A., 2009, Quantitative analysis of deformation twinning in zirconium, Int. J. Plasticity, 25, 454-472.
  • Mecking, H., Kocks, U. F., Hartig, C, 1996, Taylor factors in materials with many deformation modes, Scripta Mater., 35,465-471.
  • Molinari, A., Ahzi, S., Kouddane, K., 1997, On the self-consistent modeling of elastic-plastic behavior of polycrystals, Mech. Mater., 26, 43-62.
  • Ortiz, M., Repetto, E., Stainier, L., 2000, A theory of subgrain dislocation structures, .J. Mech. Phys. Solids, 48, 2077-21 14.
  • Petryk, H., 2000, General conditions for uniqueness in materials with multiple mechanisms of inelastic deformation, J. Mech. Phys. Solids, 48, 367-396.
  • Petryk, H., Kursa, M., 2013, The energy criterion for deformation banding in ductile single crystals, J. Mech. Phys. Solids, 61, 1854-1875.
  • Pospiech, J., 2008, Effects in the texture and microstructure in some metals of cubic and hexagonal symmetry caused by the change of the rolling direction, Acta Metal. Mater., 53, 83-87.
  • Pospiech, J., Ostafin, M., Schwarzer, R., 2006, The effect of rolling geometry on the texture and microstructure in AZ31 and copper, Acta Metal. Mater, 51, 37-42.
  • Proust, G., Tome, C. N., Jain, A., Agnew, S. R., 2009, Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31, Int. J. Plasticity, 25, 861-880.
  • Proust, G., Tomé, C. N., Kaschner, G. C, 2007, Modeling texture, twinning and hardening evolution during defor mation of hexagonal materials, Acta Mater, 55, 2137-2148.
  • Salem, A. A., Kalidindi, S. R., Doherty, R. D., Semiatin, S. L., 2006, Strain hardening due to deformation twinning in α-Titanium: Mechanisms, Metal. Mater. Trans., A 37A, 259-268.
  • Salem, A. A., Kalidindi, S. R., Semiatin, S. L., 2005, Strain hardening due to deformation twinning in α-titanium: Constitutive relations and crystal plasticity modeling, Acta Mater., 53, 3495-3502.
  • Staroselsky, A., Anand, L., 1998, Inelastic deformation of poly-crystalline face centered cubic materials by slip and twinning, J. Mech. Phys. Solids, 46, 671-696.
  • Staroselsky, A., Anand, L., 2003, A constitutive model for hep materials deforming by slip and twinning: application to magnesium alloy AZ31B, Int. J. Plasticity, 19, 1843-1864.
  • Stupkiewicz, S., Petryk, H., 2002, Modelling of laminated microstractures in stress-induced martensitic transformations, J. Phys. Mech. Solids, 50, 2303-2331.
  • Szczerba, M. S., Bajor, T., Tokarski, T., 2004, Is there a critical resolved shear stress for twinning in face-centered cubic crystals? Phil. Mag., 84,481-502.
  • Tomé, C. N., Lebensohn, R. A., Kocks, U. F., 1991, A model for texture development dominated by deformation twinning: application to zirconium alloy, Acta Metal. Mater, 39, 2667-2680.
  • Van Houtte, P., 1978, Simulation of the rolling texture and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metal., 26, 591-604.
  • Van Houtte, P., Li, S., Seefeldt, M, Delannay, L., 2005, Deformation texture prediction: from the Taylor model to the advanced Lamel model, Int. J. Plasticity, 21, 589-624.
  • Wang, Y. D., Vadon, A., Heizmann, J. J., 1997, Room temperature compression textures and deformation mechanisms of TiAl-46Al-2V alloy, Mater. Sci. Eng., A222, 70-75.
  • Wang, Y. N., Huang, J. C., 2007, The role .of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy, Acta Mater., 55, 897-905.
  • Wu, X., Kalidindi, S. R., Necker, C, Salem, A. A., 2007, Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity α-titanium using a Taylor-type crystal plasticity model, Acta Mater, 55,423-432.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2df9768-2360-4522-89f3-0472e74ddca6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.