Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one-dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Rocznik
Tom
Strony
529--537
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Centre of Mathematics, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
autor
- Centre of Mathematics, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
autor
- Centre of Mathematics, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; Institute of Mathematics, Paul Sabatier University, 118, route de Narbonne, 31062 Toulouse, France
Bibliografia
- [1] Audusse, E. and Bristeau, M.-O. (2007). Finite-volume solvers for a multilayer Saint-Venant system, International Journal of Applied Mathematics and Computer Science 17(3): 311–320, DOI: 10.2478/v10006-007-0025-0.
- [2] Barreira, L., Teixeira, C. and Fonseca, E. (2008). Avaliação da resistência do colo do fémur utilizando o modelo de elementos finitos, Revista da Associação Portuguesa de Análise Experimental de Tensões 16: 19–24.
- [3] Branco, C.M. (2011). Mecânica dos Materiais, Fundação Calouste Gulbenkian, Lisboa.
- [4] Clain, S., Diot, S. and Loubère, R. (2011). A high-order polynomial finite volume method for hyperbolic system of conservation laws with multi-dimensional optimal order detection (MOOD), Journal of Computational Physics 230(10): 4028–4050.
- [5] Clain, S., Machado, G.J., Nóbrega, J.M. and Pereira, R.M.S. (2013). A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients, Computer Methods in Applied Mechanics and Engineering 267(1): 43–64.
- [6] Diot, S., Clain, S. and Loubère, R. (2011). Multi-dimensional optimal order detection (mood)—a very high-order finite volume scheme for conservation laws on unstructured meshes, 6th Finite Volume and Complex Application, Prague, Czech Republic, pp. 263–271.
- [7] Dumbser, M. and Munz, C.-D. (2007). On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes, International Journal of Applied Mathematics and Computer Science 17(3): 297–310, DOI: 10.2478/v10006-007-0024-1.
- [8] Eymard, R., Gallouët, T. and Herbin, R. (2000). The finite volume method, in P. Ciarlet and J.L. Lions (Eds.), Handbook for Numerical Analysis, North Holland, Amsterdam, pp. 715–1022.
- [9] Hernández, J. (2002). High-order finite volume schemes for the advection-diffusion equation, International Journal for Numerical Methods in Engineering 53(5): 1211–1234.
- [10] Kroner, D. (1997). Numerical Schemes for Conservation Laws, Wiley-Teubneur Publishers, Chichester.
- [11] Leveque, R.J. (2002). Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge.
- [12] Ollivier-Gooch, C. and Altena, M.V. (2002). A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics 181(2): 729–752.
- [13] Ramos, A. and Simoes, J.A. (2009). Caracterização de cavilhas de fixação intra-medular de estabilização de fracturas ósseas, Revista da Associação Portuguesa de Análise Experimental de Tensões 17: 49–55.
- [14] Toro, E. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin/Heidelberg.
- [15] Toro, E. and Hidalgo, A. (2009). Ader finite volume schemes for nonlinear reaction–diffusion equations, Applied Numerical Mathematics 59(1): 73–100.
- [16] Trangenstein, J.A. (2009). Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, Cambridge.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2dd971e-b25c-48d2-b7f9-8da9dadb4f3f