Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents results of a study concerning an AlSi7Mg alloy and the effect of subjecting the liquid metal to four different processes: conventional refining with hexachloroethane; the same refining followed by modification with titanium, boron, and sodium; refining by purging with argon carried out in parallel with modification with titanium and boron salts and strontium; and parallel refining with argon and modification with titanium, boron, and sodium salts. The effect of these four processes on compactness of the material, parameters of microstructure, and fatigue strength of AlSi7Mg alloy after heat treatment. It has been found that the highest compactness (the lowest porosity ratio value) and the most favorable values of the examined parameters of microstructure were demonstrated by the alloy obtained with the use of the process including parallel purging with argon and modification with salts of titanium, boron, and sodium. It has been found that in the fatigue cracking process observed in all the four variants of the liquid metal treatment, the crucial role in initiation of fatigue cracks was played by porosity. Application of the process consisting in refining by purging with argon parallel to modification with Ti, B, and Na salts allowed to refine the microstructure and reduce significantly porosity of the alloy extending thus the time of initiation and propagation of fatigue cracks. The ultimate effect consisted in a distinct increase of the fatigue limit value.
Czasopismo
Rocznik
Tom
Strony
61--66
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Rzeszow University of Technology, Rzeszów, Poland
autor
- Rzeszow University of Technology, Rzeszów, Poland
autor
- Rzeszow University of Technology, Rzeszów, Poland
autor
- Rzeszow University of Technology, Rzeszów, Poland
Bibliografia
- [1] Wang, Q.G., Apelian, D. & Lados, D.A. (2001). Fatigue behavior of A356/357 aluminum cast alloys. Part II - Effect of microstructural constituents. Journal of Light Metals. 1, 85-97.
- [2] Wang, Q.G., Cáceres, C. H. & Griffith J.R. (1998). Cracking of Fe-rich inter-metallics and eutectic Si particles in an Al-7Si-0.7Mg casting alloy. AFS Transactions. 32, 131-136.
- [3] Liu, Y., Jie, W., Gao, Z., Zheng, Y., Luo, H. & Song, W. (2015). Rotary bending fatigue behavior of A356 T6 aluminum alloys by vacuum pressurizing casting. China Foundry. 12(5), 326-332.
- [4] Zheng, X., Cui, H. Engler-Pinto Jr., C.C., Sub, X. & Wen, W. (2013). Statistical relationship between fatigue crack initiator size and fatigue life for a cast aluminum alloy. Materials Science and Engineering: A. 580, 15 September, 71-76. DOI: 10.1016/j.msea.2013.05.045.
- [5] Zhang, B., Chen, W. & Poirier, D.R. (2000). Effect of solidification cooling rate on the fatigue life A356.2-T6 cast aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures. 23, 417-423.
- [6] Siegfanz, S., Giertler, A., Michels, W. & Krupp, U. (2013). Influence of the microstructure on the fatigue damage behaviour of the aluminium cast alloy AlSi7Mg0.3. Materials Science and Engineering A. 565, 10 March, 21-26. DOI: 10.1016/j.msea.2012.12.047.
- [7] Fuoco, R., Correa, E.R. & de Andrade Bastos, M. (1998). Effect of grain refinement on feeding mechanisms in A356 aluminum alloy. AFS Transactions. 78, 401-409.
- [8] Easton, M.A. & StJohn, D.H. (2000). The effect of grain refinement on the formation of casting defects in alloy 356 castings. International Journal of Cast Metals Research. 12, 393-408.
- [9] Kim, W.B., Lee, W.-S., Ye, B.J. & Loper, C.R. Jr. (2000). Effect of casting conditions and grain refinement on hot-tearing behavior in A356 Al alloy. AFS Transactions. 38, 541-546.
- [10] Alan Najafabadi, M.A., Ourdjini, A. & Elliot, R. (1994). Impurity modification of aluminum-silicon eutectic alloys. Cast Metals. 8(1), 43-50.
- [11] Alan Najafabadi, M.A., Khan, S., Ourdjini, A. & Elliot, R. (1994). The flake-fibre transition in aluminum-silicon eutectic alloys. Cast Metals. 8(1), 35-42.
- [12] Liu, L., Samuel, A.M. & Samuel, F.H. (2002). Role of strontium oxide on porosity formation in Al-Si casting alloy. AFS Transactions. 139, 1-14.
- [13] Fuoco, R., Correa, E.R. & Goldenstein, H. (1996). Effect of modification treatment on microporosity formation in 356 Al Alloy, Part I: Interdendritic feeding evaluation. AFS Transactions. 160, 1151-1157.
- [14] Boileau, J. & Allison, J.E. (2003). The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy. Metallurgical and Materials Transactions A. 34A, June, 1807-1820.
- [15] Yi, J.Z., Gao, Y.X., Lee, P.D., Flower, H.M. & Lindley, T.C. (2003). Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys. Metallurgical and Materials Transactions A. 34A, September, 2003, 1879-1890.
- [16] Orłowicz, A.W., Tupaj, M. & Mróz, M. (2008). Effect of cooling rate on the λ2D - parameter with sodium modified
- AlSi7Mg alloy. Archives of Foundry Engineering. 8(1), 245-248.
- [17] Orłowicz, A., Tupaj, M. & Mróz, M. (2008). Mechanical properties of AlSi7Mg alloy modified with sodium. Archives of Foundry Engineering. 8(spec.1), 241-244. (in Polish).
- [18] Orłowicz, A.W., Tupaj, M. & Mróz, M. (2006). Selecting of heat treatment parameters for AlSi7Mg0,3 alloy. Archives of Foundry. 6(22), 350-356. (in Polish).
- [19] Orłowicz, A., Tupaj, M. & Mróz, M. (2000). Effect of cooling rate on the structure of hypoeutectic silumin after sodium modification. Rudy i Metale Nieżelazne. 53(7), 425-429. (in Polish).
- [20] Cáceres, C.H. & Wang, Q.G. (1996). Dendrite cell size and ductility of Al-Si-Mg casting alloys: Spear and Gardner revisited. International Journal of Cast Metals Research. 9, 157-162.
- [21] Spear, R.E. & Gardner, G.R. (1963). Dendrite cell size. AFS Transactions. 71, 209-215.
- [22] Rontó, V. & Roósz, A. (2001). The effect of cooling rate and composition and com-position on the secondary dendrite arm spacing during solidification Part I: Al-Cu-Si alloy. International Journal of Cast Metals Research. 13, 337-342.
- [23] Mróz, M., Orłowicz, A., Tupaj, M. & Trytek, A. (2010). Fatigue of strength of MAR-M509 alloy with structure refined by rapid crystallization. Archives of Foundry Engineering. 10(3), 119-122.
- [24] Tajiri, A., Nozaki, T., Uematsu, Y., Kakiuchi, T., Nakajima M., Nakamura, Y. & Tanaka, H. (2014). Fatigue limit prediction of large scale cast aluminum alloy A356. 20th European Conference on Fracture (ECF20). Procedia Materials Science. 3, 924 – 929. DOI: 10.1016/j.mspro.2014. 06.150.
- [25] Brochu, M., Verreman, Y., Ajersch, F. & Bouchard, D. (2010). High cycle fatigue strength of permanent mold and rheocast aluminum 357 alloy. International Journal of Fatigue. 32(8), 1233-1242. DOI: 10.1016/j.ijfatigue.2010. 01.001.
- [26] González, R., González, A., Talamantes-Silva, J., Valtierra, S., Mercado-Solís, R.D., Garza-Montes-de-Oca, N.F. & Colás, R. (2013). Fatigue of an aluminium cast alloy used in the manufacture of automotive engine blocks. International Journal of Fatigue. 54, 118-126. DOI: 10.1016/j.ijfatigue. 2013.03.018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2d4bba6-df0f-41bf-b9d7-7222a35d1041