PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of scanning electron microscopy, ultimate and proximate analysis of sewage sludge char and the use of RETScreen software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigated different categories of sewage sludge (SS): dry SS after hydrothermal carbonization, before hydrothermal carbonization, plasma ash, ash after gasification with hydrothermal carbonization, and ash after gasification without hydrothermal carbonization. These five cases were studied. After proximate, ultimate, and scanning electron microscopy analysis, we found that sewage sludge before and after hydrothermal carbonization were the best of these five categories. The carbon content was higher and the sulfur content was lower in both cases than the other types of SS. A lower percentage of sulfur avoids corrosion. The percentage of ash was also low in both cases, which is more beneficial for plasma gasification as compared to the other types. The scanning electron microscopy showed that the hydro char surfaces were rougher and harder than the raw materials; moreover, it was found to be more porous than the raw material. The software program RETScreen is used for energy management. At its core, the tool is standardized and integrated clean energy project analysis software that can be employed worldwide for evaluating energy production, lifecycle costs, and reductions in greenhouse gas emissions for various energy-efficient and renewable energy technologies.
Rocznik
Tom
Strony
83--96
Opis fizyczny
Bibliogr. 36 poz., fot., tab., wykr.
Twórcy
autor
  • Wrocław University of Science and Technology, Wrocław, Poland, Mechanical and Power Engineering, Department of Energy Conversion
  • Wrocław University of Science and Technology, Wrocław, Poland, Mechanical and Power Engineering, Department of Energy Conversion
autor
  • Wrocław University of Science and Technology, Wrocław, Poland, Mechanical and Power Engineering, Department of Energy Conversion
Bibliografia
  • [1] M. Kacprzak, E. Neczaj, K. Fijałkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, Å. Almås, B.R. Singh, Sewage sludge disposal strategies for sustainable development, „Environ. Res.” 2017, 156, s. 39-46.
  • [2] S. Werle, Sewage Sludge-To-Energy Management in Eastern Europe: A Polish Perspective, „Ecol. Chem. Eng. S” 2015, 22, s. 459-469.
  • [3] T.T. Trinh, S. Werle, K.-Q. Tran, A. Magdziarz, S. Sobek, M. Pogrzeba, Energy crops for sustainable phytoremediation - Thermal decomposition kinetics, „Energy Proc.” 2019, 158, s. 873-878.
  • [4] M. Zubrowska-Sudol, J. Walczak, Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge, „Water Res.” 2015, 76, s. 10-18.
  • [5] E. Szatyłowicz, J. Walczak, M. Zubrowska-Sudoł, A. Garlicka, Deactivation of the Activated Sludge As a Result of Mechanical Disintegration, „Inżynieria Ekologiczna” 2017, 18, s. 114-121.
  • [6] M. Zubrowska-Sudol, J. Walczak, Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms, „Water Res.” 2014, 61, s. 200-209.
  • [7] M. Zubrowska-Sudoł, J. Podedworna, A. Bisak, K. Sytek-Szmeichel, P. Krawczyk, A.Garlicka, Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants, E3S Web. Conf. 2017, 22, s. 00208.
  • [8] E. Szatyłowicz, A. Garlicka, M. Zubrowska-Sudoł, The Effectiveness of the Organic Compounds Released Due To the Hydrodynamic Disintegration of Sewage Sludge, „Inżynieria Ekologiczna” 2017, 18, s. 47-55.
  • [9] J. Mukawa, T. Pająk, T. Rzepecki, Sewage sludge treatment in the process of thermal hydrolysis and digestion on the Tarnow sewage treatment plant example, „Przem. Chem.” 2018, 1, s. 92-94.
  • [10] K. Czerwińska, M. Sliz, M. Wilk, Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review, „Renew. Sustain. Energy Rev.” 2022, 154, s. 111873.
  • [11] C.I. Aragón-Briceño, O. Grasham, A.B. Ross, V. Dupont, M.A. Camargo-Valero, Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics, „Renew. Energy” 2020, 157, s. 959-973.
  • [12] M. Wilk, A. Magdziarz, K. Jayaraman, M. Szymańska-Chargot, I. Gökalp, Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study, „Biomass Bioenergy” 2019, 120, s. 166-175.
  • [13] C. Aragón-Briceño, A.B.B. Ross, M.A.A. Camargo-Valero, Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment, „Appl. Energy” 2017, 208, s. 1357-1369.
  • [14] C.I. Aragón-Briceño, A.B. Ross, M.A. Camargo-Valero, Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge, „Renew. Energy” 2021, 167, s. 473-483.
  • [15] H. Pawlak-Kruczek, K.K. Krochmalny, M. Wnukowski, L. Niedźwiecki, Slow pyrolysis of the sewage sludge with additives: Calcium oxide and lignite, „J. Energy Resour. Technol.” 2018, 140, s. 062206.
  • [16] H. Pawlak-Kruczek, M. Wnukowski, K. Krochmalny, M. Kowal, M. Baranowski, J. Zgóra, M. Czerep, M. Ostrycharczyk, L. Niedzwiecki, The Staged Thermal Conversion of Sewage Sludge in the Presence of Oxygen, „J. Energy Resour. Technol.” 2019, 141, s. 070701.
  • [17] D. Nagy, P. Balogh, Z. Gabnai, J. Popp, J. Oláh, A. Bai, Economic Analysis of Pellet Production in Co-Digestion Biogas Plants, „Energies” 2018, 11, s. 1135.
  • [18] S. Wang, H. Persson, W. Yang, P.G. Jönsson, Pyrolysis study of hydrothermal carbonization-treated digested sewage sludge using a Py-GC/MS and a bench-scale pyrolyzer, „Fuel” 2020, 262, s. 116335.
  • [19] S. Wang, P. Mandfloen, P. Jönsson, W. Yang, Synergistic effects in the co-pyrolysis of municipal sewage sludge digestate and salix: Reaction mechanism, product characterization and char stability, „Appl. Energy” 2021, 289, s. 116687.
  • [20] M. Dudziak, S. Werle, K. Grübel, Evaluation of Contamination of Dried Sewage Sludge and Solid By-Products of Dried Sewage Sludge Gasification By Infrared Spectroscopy Method, „Inżynieria Ekologiczna” 2016, 50, s. 195-200.
  • [21] S. Werle, Gasification of a Dried Sewage Sludge in a Laboratory Scale Fixed Bed Reactor, „Energy Proc.” 2015, 66, s. 253-256.
  • [22] S. Werle, M. Dudziak, Pollution of liquid waste-products from sewage sludge gasification, Proc. ECOpole 2015, 9, s. 15-17.
  • [23] S. Werle, Gasification of a Dried Sewage Sludge in a Laboratory Scale Fixed Bed Reactor, „Energies” 2015, 8, s. 8562-8572.
  • [24] N. Gao, Q. Cui, N. Miskolczi, A. Egedy, A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: Bench-scale verification, „Journal of Analytical and Applied Pyrolysis” 2019, 139, s. 187-195.
  • [25] P. Munsik, L. Sunkyung, Y. Seungjae, Ji Hae Seo, P. Donghee, A study of solubilization of sewage sludge by hydrothermal treatment, „Journal of Environmental Management” 2019, 250, s. 109490.
  • [26] Ch. Wang, U. Hornung, W. Zhu, N. Dahmen, Char and tar formation during hydrothermal treatment of sewage sludge in subcritical and supercritical water: Effect of organic matter composition and experiments with model compounds, „Journal of Cleaner Production” 2020, 242, s. 118586.
  • [27] J.M. Jarvis, J.M. Billing, A.J. Schmidt, R.T. Hallen, T.M. Schaub, Assessment of Hydrotreatment for Hydrothermal Liquefaction Biocrudes from Sewage Sludge, Microalgae, and Pine Feedstocks, „Energy Fuels” 2018, 32, s. 8483−8493.
  • [28] M. Escala, Ch. Koller, R. Junge, R. Krebs, Hydrothermal Carbonization as an Energy Efficient Alternative to Established Drying Technologies for Sewage Sludge: A Feasibility Study on a Laboratory Scale, „Energy & Fuels” 2013, 27, s. 454−460.
  • [29] L. Wang, A. Li, Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review, „Renewable and Sustainable Energy Reviews” 2019, 108, s. 423-440.
  • [30] M. Pecchi, Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review, „Renewable and Sustainable Energy Reviews” 2019, 105, s. 462-475.
  • [31] K.-H. Lin, J.-Y. Zeng, H.-L. Chiang, Temperature influence on product distribution and characteristics of derived residue and oil in wet sludge pyrolysis using microwave heating, „Science of the Total Environment” 2017, 584-585, s. 1248-1255.
  • [32] R.Z. Gaur, O. Khoury, M. Zohar, E. Poverenov, R. Darzi, Y. Laor, R. Posmanik, Hydrothermal carbonization of sewage sludge coupled with anaerobic digestion: an integrated approach for sludge management and energy recycling, „Energy Conversion Management” 2020, 24:113353; https://doi.org/10.1016/j.enconman. 2020.11335341.
  • [33] M. Puccini, A.L. Tasca, M. Gemma, A. Raspolli, S. Vitolo, G. Riccardo, Hydrothermal carbonization of sewage sludge: process optimization by response Surface methodology, Conference: 3rd IWA Resource Recovery Conference at Venice.
  • [34] A. Mlonka-Mędrala, M. Sieradzka, A. Magdziarz, Thermal Upgrading of Hydrochar from Anaerobic Digestion of Municipal Solid Waste Organic Fraction, „Fuel” 2022, 324, s. 124435.
  • [35] N. Gao, Z. Li, C. Quan, N. Miskolczi, A. Egedy, A New Method Combining Hydrothermal Carbonization and Mechanical Compression In-Situ for Sewage Sludge Dewatering: Bench-Scale Verification, „J. Anal. Appl. Pyrolysis” 2019, 139, s. 187-195.
  • [36] H.B. Sharma, B.K. Dubey, Binderless Fuel Pellets from Hydrothermal Carbonization of Municipal Yard Waste: Effect of Severity Factor on the Hydro char Pellets Properties, „J. Clean. Prod.” 2020, 277, s. 124295.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2d45c29-e295-46c7-bc7b-ff6851315f81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.