PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D Geometric Surface Structure ANN Modeling after Milling of the AZ91D Magnesium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of modeling 2D surface roughness parameters in milling by means of an artificial neural network (ANN). The AZ91D magnesium alloy was used. A HSS milling cutter was employed in the research. The main aim of the study was to obtain the lowest possible surface roughness (good quality) using a commonly available HSS cutter. The results of the research work were presented in the form of bar charts, surface charts and graphs depicting the quality of artificial neural networks. The conducted research shows that it is possible to carry out the machining processes that enable obtaining an average surface quality (defined by roughness parameters Ra, Rz, RSm, Rsk). The Ra, Rz, RSm parameters increase along with the machining parameters (fz, ap), as expected. The Rsk parameter takes (in most cases) negative values, which may indicate a surface with more intense friction and indicative of flat-topped distribution. On the other hand, the results of modeling the selected parameters – Ra, Rz, RSm – with the use of artificial neural networks allow concluding that the obtained network models show satisfactory predictive ability (R = 0.99), and thus are an appropriate tool for the prediction of surface roughness parameters.
Twórcy
  • Department of Organisation of Enterprise, Management Faculty, Lublin University of Technology
  • Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology
  • Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology
Bibliografia
  • 1. Zagórski I., Korpysa J. Surface Quality Assessment after Milling AZ91D Magnesium Alloy Using PCD Tool. Materials. 2020; 13: 617.
  • 2. Korpysa J., Kuczmaszewski J., Zagórski I. Dimensional Accuracy and Surface Quality of AZ91D Magnesium Alloy Components after Precision Milling. Materials. 2021; 14: 6446.
  • 3. Guo Y.B., Salahshoor M. Process mechanics and surface integrity by high‐speed dry milling of biodegradable magnesium–calcium implant alloys. CIRP Annals - Manufacturing Technology. 2010; 59: 151–154.
  • 4. Salahshoor M., Guo Y.B. Surface integrity of magnesium‐calcium implants processed by synergistic dry cutting‐finish burnishing. Procedia Eng. 2011; 19: 288–293.
  • 5. Qiao Y., Wang S., Guo P., Yang X., Wang Y. Experimental research on surface roughness of milling medical magnesium alloy. IOP Conference Series: Materials Science and Engineering. 2018; 397: 1–7.
  • 6. Desai S., Malvade N., Pawade R., Warhatkar H. Effect of High Speed Dry Machining on Surface integrity and Biodegradability of Mg‐Ca1.0 Biodegradable Alloy. Materials Today Proceedings. 2017; 4: 6817–6727.
  • 7. Sathyamoorthy V., Deepan, S., Sathya Prasanth S.P., Prabhu L. Optimization of Machining Parameters for Surface Roughness in End Milling of Magnesium AM60 Alloy. Indian Journal of Science and Technology. 2017; 10: 1–7.
  • 8. Kuczmaszewski J., Zagórski I., Gziut O., Legutko S., Królczyk G.M. Chip fragmentation in the milling of AZ91HP magnesium alloy. Strojniski Vestnik. Journal of Mechanical Engineering. 2017; 63(11): 628–642.
  • 9. Gziut O., Kuczmaszewski J., Zagórski I. Surface quality assessment following high performance cutting of AZ91HP magnesium alloy. Management and Production Engineering Review. 2015; 6(1): 4–9.
  • 10. Zagórski I., Korpysa J. Surface quality in milling of AZ91D magnesium alloy. Advances in Science and Technology Research Journal. 2019; 13(2): 119–129.
  • 11. Sangwan K.S., Saxena S., Kant G. Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Proc. CIRP. 2015; 29: 305–310.
  • 12. Kaviarasan V., Venkatesan R., Natarajan E. Prediction of surface quality and optimization of process parameters in drilling of Delrin using neural network. Progress in Rubber, Plastics and Recycling Technology. 2019; 35(3): 149–169.
  • 13. Zerti A., Yallese M.A., Zerti O., Nouioua M., Khettabi R. Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420. Proceedings of the Institution of Mechanical Engineers. 2019; C233(13): 4439–4462.
  • 14. Zagórski I., Kulisz M., Kłonica M., Matuszak J. Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys. Materials. 2019; 12(13): 2070.
  • 15. Karkalos N.E., Galanis N.I., Markopoulos A.P. Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques. Measurement. 2016; 90: 25–35.
  • 16. Chen Y., Sun Y., Lin H., Zhang B. Prediction Model of Milling Surface Roughness Based on Genetic Algorithms. In: Xu Z., Choo K.K., Dehghantanha A., Parizi R., Hammoudeh M. (Eds.) Cyber Security Intelligence and Analytics. CSIA 2019. Advances in Intelligent Systems and Computing, Springer, Cham; 2020: 928.
  • 17. Abbas A.T., Pimenov D.Y., Erdakov I.N., Taha M.A., Soliman M.S., El Rayes M.M. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs. Materials. 2018; 11: 808.
  • 18. Acayaba G.M.A., Escalona P.M.D. Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel. CIRP Journal of Manufacturing Science and Technology. 2015; 11: 62–67.
  • 19. Wu T.Y., Lei K.W. Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network. The International Journal of Advanced Manufacturing Technology. 2019; 102: 305–314.
  • 20. Santhakumar J., Iqbal U.M. Role of trochoidal machining process parameter and chip morphology studies during end milling of AISI D3 steel. Journal of Intelligent Manufacturing. 2019; 32: 649–665.
  • 21. Dijmărescu M.R., Abaza B.F., Voiculescu I., Dijmărescu M.C., Ciocan I. Surface Roughness Analysis and Prediction with an Artificial Neural Network Model for Dry Milling of Co–Cr Biomedical Alloys. Materials. 2021; 14(21): 6361.
  • 22. Eser A., Ayyıldız E.A., Ayyıldız M., Kara F. Artificial Intelligence-Based Surface Roughness Estimation Modelling for Milling of AA6061 Alloy. Advances in Materials Science and Engineering. 2021; 2021: 5576600.
  • 23. Zagórski I., Kłonica M., Kulisz M., Łoza K. Effect of the AWJM method on the machined surface layer of AZ91D magnesium alloy and simulation of roughness parameters using neural networks. Materials. 2018; 11(11): E2111.
  • 24. Cojbasic Z., Petkovic D., Shamshirband S., Chong W.T., Sudheer Ch., Jankovic P., Ducic N., Baralic J. Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precision Engineering. 2016; 43: 86–92.
  • 25. Al-Ahmari A.M.A. Prediction and optimisation models for turning operations. International Journal of Production Research. 2008; 46: 4061–4081.
  • 26. Kulisz M., Zagórski I., Korpysa J. Surface quality simulation with statistical analysis after milling AZ91D magnesium alloy using PCD tool. Journal of Physics: Conference Series. 2021; 1736: 012034.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2cf0f90-103a-4222-bf97-63275ce2f86b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.