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INTRODUCTION

Surface roughness is an important manu-
facturing factor for the production of various 
types of elements from diverse materials in dif-
ferent industries (machinery, automotive and 
aerospace). These requirements are increasing 
especially when the mutual cooperation of two 
or more elements is crucial. It is also an inter-
esting scientifi c aspect during the implementa-
tion of machining processes on workpieces. In 
the case of magnesium alloys, the roughness 
achieved and the manufacturing accuracy (with 
relatively small dispersion of dimensional val-
ues and high-performance accuracy classes) can 
be successfully comparable, or even better, than 
after various fi nishing processes (Ra ≤ 0.16 µm 
[1], accuracy class IT2 - IT5 [2]).

During dry machining of the Mg-Ca0.8 alloy 
with the use of a milling head with PCD blades 
[3], the greatest impact on the Ra parameter was 
the feed (mm/rev), where Ra was obtained in 
the range of approx. 0.2–0.8 µm. The results of 
Ra variability with the change of vc (up to 2800 
m/min) and ap were within the range of approx. 
0.4–0.6 µm. In a similar study by the authors 
[4], the roughness level of approx. 0.4 µm was 
obtained after dry milling and low plasticity bur-
nishing. The research with the use of biodegrad-
able MgCa0.8 magnesium alloys was also carried 
out in [5]. A milling head with uncoated carbide 
inserts was used for machining. Regardless of the 
change in technological parameters, the lower 
values of the roughness parameter Ra = approx. 
0.09–0.8 μm, were obtained in inverse milling, 
while in milling the roughness was Ra = approx. 
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0.9–1.4 μm. The feed per tooth had the greatest 
impact on the obtained roughness. 

Similar relationships were found during the 
machining of the Mg-Ca1.0 alloy. Milling was 
carried out using a milling head with plates of the 
so-called diamond-like coating (DLC) [6]. The 
used machining parameters: vc = 300–600 m/min, 
fz = 0.0125–0.125 mm/tooth and ap = 0.05–0.50 
mm made it possible to obtain the lowest values 
of the roughness parameter Ra = approx. 0.08–
0.16 μm. Increasing vc decreased the roughness, 
while increasing fz resulted in its increase. Despite 
this fact, the mean value of the surface roughness 
was kept at a very low level. The optimal combi-
nation of cutting parameters (the lowest surface 
roughness) was also sought in [7], who conduct-
ed research on the AM60 alloy. The parameters 
n = 2000 rev/min, f = 0.1 mm/rev and ap = 1.0 
mm, where Ra = approx. 0.3 µm. According to 
the research conducted on surface roughness pa-
rameters, technological parameters, the kinematic 
relations between these parameters and the geom-
etry of the tool tip influence the shape and form 
of the chips [8].

In scientific research, carbide cutters without 
coating [9], cutters with protective coatings such 
as TiN [7], TiAlN [10], TiB2 [2] or TiAlCN as 
well as cutters with high-quality polycrystalline 
diamond blades [1] are often used. For example, 
it is possible to mill with the machining param-
eters defined as effective, rough (vc = 1200 m/
min, fz = 0.15 mm/tooth, ap = 6 mm) reaching the 
roughness parameter Ra (measured on the sample 
face) at the level of approx. 0.5 µm (for γ = 5°) 
and approx. 2 µm (for γ = 30°). The mean value of 
the Ra parameter (this time measured on the side 
wall of the sample) was lower and amounted to 
approx. 0.3 µm for the given conditions [9].

Experimental research in the field of machining 
process analysis is more and more often supported 
by the use of machine learning methods, including 
artificial neural networks. This is due to the fact 
that in connection with the development of new 
technologies and the emerging modern machines 
and devices, the efficiency of processes as well as 
the appropriate quality of the treated surfaces, are 
highly important. In the face of such challenges, 
numerical models representing given phenomena, 
based on experimental models, are used.

The use of artificial neural networks has 
been the subject of numerous studies, which can 
be seen in the works of, among others, Sangwan 
et al. [11], Kaviarasan et al. [12], Zerti et al. 

[13], Zagórski et al. [14], Karkalos et al. [15], 
and Chen et al. [16]. Artificial neural networks 
were used for various processes, including turn-
ing [11, 13, 17, 18], milling [15, 16, 19–22] or 
Abrasive WaterJet Machining [23, 24]. In addi-
tion, in the literature on modeling and simula-
tion of SNN in the area of machining, studies 
concern various materials, including steel [19], 
titanium alloys [15], aluminum alloys [13, 18, 
22, 24] or magnesium alloys [17, 23]. Moreover,  
different scopes of research can be noticed; they 
concern, inter alia, optimization of machining 
parameters in order to obtain the appropriate 
surface quality [11], cutting forces [25], vibra-
tions [14] or machining efficiency [13].

On the basis of literature analysis, it can be 
noticed that researchers in the field of milling 
machining primarily deal with modeling one sur-
face roughness parameter, i.e. Ra, which can be 
seen in the works of, among others, Karkalos et 
al. [15], Wu et al. [19], Chen et al. [16] or San-
thakumar et al. [20]. Taking into account the 
practical application of the modeling results, it 
seems insufficient to be able to perform a detailed 
analysis of the surface conditions. There are few 
works concerning a wider range of surface rough-
ness parameters, e.g., the work of Zerti et al. [13] 
where the Ra, Rz, Rt parameters were analyzed 
or the studies by Kulisz et al. [26], where the Ra, 
Rz, RSm parameters were predicted. Zerti et al. 
[13] conducted the research related to dry turning 
simulations, while Kulisz et al. [26] analyzed the 
milling process using a PCD tool. Therefore, it 
is justified to expand the scope of research in the 
field of process modeling regarding the increase 
of the number of parameters as well as the change 
of machining conditions. 

Taking into account the above-mentioned 
analysis, it can be concluded that the so-called 
basic parameters of surface roughness, while a 
much broader approach is required for a com-
prehensive assessment, taking into account, for 
example, a surface roughness parameter such 
as kurtosis. Additionally, it should be noted that 
for the machining of magnesium alloys, most re-
searchers use carbide milling cutters with or with-
out coatings. In addition, the use of, i.a. artificial 
neural networks may contribute to reducing the 
number of necessary research tests, for example, 
for the selection and optimization of technologi-
cal processing parameters in order to obtain the 
appropriate surface roughness and maintain ad-
equate process efficiency. 
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Therefore, the aim of the work was to 
conduct tests in order to obtain the possible 
surface roughness (defined by the roughness 
parameters, i.e. Ra, Rz, RSm, Rsk) using a 
commonly available HSS cutter. Another goal 
was to model 2D surface roughness parameters 
(Ra, Rz, RSm) in milling the AZ91D magne-
sium alloy with the use of the HSS tool in or-
der to predict these parameters. This is due to 
the fact that Rz is the second, after Ra, most 
frequently used surface roughness parameter 
in many production companies. Due to the par-
tial consideration of individual elevations and 
depressions, the parameter should be mainly 
analyzed for bearing or sliding surfaces and 
measuring surfaces. The Rsk parameter, on 
the other hand, can play an important role in 
monitoring the technological process, e.g. to 
detect surface defects, as well as in conduc-
tivity monitoring, and lubricant maintenance. 
A surface with negative skewness is character-
ized by a greater frequency of deep valleys; it 
is defined by the shape of a plateau and as-
sumed to be optimal. On the other hand, the 
RSm parameter can be used to analyze contact 
deformations (or contact stiffness) and thermal 
conductivity. 

The main research contribution is the ex-
tension of modeling with additional Rz and 
RSm parameters, and not focusing only on the 
Ra parameter, which will allow for a detailed 
analysis of the surface conditions of surface 
roughness. Modeling of the above-mentioned 
roughness parameters can constitute the basis 
for creating tools helpful in the work of the 
technologist when determining the conditions 
of the machining process in order to obtain the 
assumed surface roughness.

RESEARCH METHODOLOGY

The AZ91D magnesium alloy was used for 
the research. A schematic diagram of the research 
is shown in Figure 1. Machining was carried out 
on a DMU 65 MonoBlock vertical milling cen-
ter, which can perform machining up to the maxi-
mum rotational speed of 12.000 rev/min. HSS Co 
steel by PRECITOOL 161701, mounted in the 
ER sleeve, was employed. It is a two-edge cut-
ter with a diameter of d = 20 mm, made of steel. 
HSS cutters are widely available tools with lower 
unit costs, compared to expensive carbide tools 
and very expensive cutters with PCD blades. 
During the research, the cutting conditions were 
constant as: radial depth of cut ae = 15 [mm] and 
cutting speed vc = 750 m/min. The range of vari-
able technological parameters included: feed per 
tooth fz = 0.01–0.05 mm/tooth and axial depth of 
cut ap = 0.1–0.4 mm. 

Flat geometric and surface parameters were 
estimated using the Mahr’s MarSurf system with 
the PS10 Drive measuring head. The high-class 
measurement systems used allowed for a wide 
and comprehensive analysis of both the AZ91D 
magnesium alloy milling process, as well as eval-
uating the machining eff ects (surface morphol-
ogy and 2D roughness parameters). The research 
analyzed roughness parameters, i.e. Ra, Rz, RSm, 
Rsk. Figure 2 shows a graphical interpretation of 
the Rsk (kurtosis) parameter, helpful for the eval-
uation of the so-called exploitation characteristics 
of the treated surface (e.g., friction and wear). 

The results of experimental studies were used 
to model surface roughness parameters – maxi-
mum height of profi le (Rz), the arithmetical mean 
roughness parameter (Ra) and mean width of pro-
fi le elements (RSm). Artifi cial neural networks 

Fig. 1. Schematic diagram of the research
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were employed for modeling. The input neurons 
were the variable fz and ap technological param-
eters, and the output neuron was the analyzed 
roughness parameter. In connection with the 
modeling of three roughness parameters, three 
models were analyzed, an example of which is 
shown in Figure 3. 

The Statistica Neural Networks software was 
used for modeling and prediction of roughness 

parameters. During the research, the MLP (multi-
layer Perceptron) neural network was used to test 
various neuron activation functions: linear, expo-
nential, logistic, tanh and sinus activation func-
tions, and various learning algorithms: BFGS 
gradient (Broyden-Fletcher-Goldfarb-Shanno), 
the steepest descent training algorithm and con-
jugate gradient. The second type of network used 
to model the roughness parameters was the RBF 
(Radial Basis Function) network, for which the 
learning algorithm is RBFT, with a Gaussian hid-
den neuron activation function and a linear func-
tion for the output layer. A network with one hid-
den layer was used. The networks were modeled 
by changing the number of neurons in the hidden 
layer from two to ten and the number of training 
epochs from 150 to 300. The experimental data 
set (20 items) was divided in the proportion of 
75–25%, where the fi rst value indicates the share 
of training data, and the second corresponds to 
validation data. Due to the small set of data, the 
testing data was omitted [14]. The analysis of the 
obtained modeling results and the selection of the 
most appropriate network were carried out on the 
basis of such indicators as: quality of learning and 
validation as well as learning and validation er-
rors. The quality of learning and validation is de-
fi ned as the correlation coeffi  cient for these sets, 
calculated in accordance with formula (1):

𝑅𝑅𝑅𝑅(𝑦𝑦𝑦𝑦′,𝑦𝑦𝑦𝑦∗) =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑦𝑦′,𝑦𝑦𝑦𝑦∗)
𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦′𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦∗

              𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 0,1 > 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖∗)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

(1)

where:  σy′ – standard deviation of reference values, 
σy* – standard deviation of predicted values, 
cov(y’,y* ) – covariance.

The errors are defi ned as the sum of the 
squared diff erences between the set values and 
the values obtained at the outputs of each output 
neuron, according to the formula (2):

𝑅𝑅𝑅𝑅(𝑦𝑦𝑦𝑦′,𝑦𝑦𝑦𝑦∗) =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑦𝑦′,𝑦𝑦𝑦𝑦∗)
𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦′𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦∗

              𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 0,1 > 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖∗)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (2)

where: n – number of cases in a given set; 
y′I – actual value of the roughness parame-
ter for the given set for the i-th observation; 
y∗i – predicted value of the roughness param-
eter for the given set for the i-th observation.

For each roughness parameter, i.e. Ra, Rz, 
RSm, 200 networks were learned, from which 
one network was selected on the basis of the 
above-mentioned indicators. 

Fig. 2. Interpretation of the Rsk (kurtosis) parameter

Fig. 3. Schematics of the artifi cial neu-
ral network with the analyzed process pa-

rameters, where nn –Ra, Rz and RSm
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EXPERIMENTAL RESULTS

Figure 4 shows an exemplary roughness 2D 
profi le curve obtained with the processing param-
eters ae = 15 mm, vc = 750 m/min, ap = 0.1 mm, fz
= 0.01 mm/tooth. 

Figures 5 and 6 show the results obtained 
from 2D roughness measurements. The impact 
of changing the axial depth of cut ap and feed 
per tooth fz change on roughness parameters, i.e. 
Ra, Rz, RSm and Rsk. The Ra, Rz parameters 
belong to the group of vertical parameters of the 
roughness profi le, they are quite well-known to 
researchers and the machine industry, hence their 

choice. The RSm parameter belongs to the hori-
zontal parameters of the roughness profi le, while 
the Rsk (skewness) parameter is helpful in the 
description of the operational features of the sur-
face. This parameter may be useful in determining 
the following physical or functional properties of 
surfaces: friction and wear, lubrication, mechani-
cal tightness (signifi cant infl uence). It can also be 
taken into account as an additional indicator in 
the case of fatigue corrosion analysis, contact de-
formation or contact stiff ness.

Changing the parameters (fz, ap) increases the 
surface roughness parameters (Ra, Rz, RSm). 
Figure 5 shows the test results for the roughness 

Fig. 4. Surface roughness profi le (ae = 15 mm, vc = 750 m/min, ap = 0.1 mm, fz = 0.01 mm/tooth)

Fig. 5. Eff ect of axial depth of cut ap and feed per tooth fz change on roughness 
parameters: a) Ra and b) Rz (ae = 15 mm, vc = 750 m/min)

Fig. 6. Eff ect of axial depth of cut ap and feed per tooth fz change on roughness 
parameters: a) RSm and b) Rsk (ae = 15 mm, vc = 750 m/min)

a) b)

a) b)
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parameters Ra (Fig. 5a) and Rz (Fig. 5b). In con-
trast, Figure 6 shows the infl uence of fz and ap
on the RSm (Fig. 6a) and Rsk (skewness – Fig. 
6b) roughness parameters. As it can be easily ob-
served, the values of the surface roughness pa-
rameters increase: Ra from the value of approx. 
1.5 µm to the average value of approx. 7 µm (and 
even at ap = 0.4 mm and fz = 0.05 mm/tooth – Ra 
= 16.125 µm), Rz from the value approx. 8 µm to 
the value of even approx. 80 µm, RSm from the 
value 110 – 120 µm to the value of approx. 344 
– 598 µm (and even at ap = 0.4 mm and fz = 0.05 
mm/tooth – RSm = approx. 848 µm). The values 
of the Rsk parameter are in most cases negative, 
which may indicate a surface with more intense 
friction and indicative of fl at-topped distribution. 
Such conditions of the Rsk parameter may indi-
cate the surface desired in operating conditions 
(blunted peaks of unevenness, Rsk negative).

MODELING RESULTS

As a result of the modeling, one network 
of each type (RBG, MLP) was selected for the 

analyzed roughness parameters, selected on the 
basis of network errors and the quality of learning 
and validation. The results of the obtained model-
ing with the parameters of the obtained networks 
are presented in Table 1. The best parameters for 
all surface roughness parameters were obtained 
for the RBF networks. In any case, the quality of 
learning and validation is higher for the RBF net-
work, compared to MLP. Moreover, the errors for 
the RBF network are smaller than for the MLP 
network. For the Ra parameter, the best network 
has six neurons in the hidden layer, Rz – fi ve, and 
RSm – eight. The quality of both learning and 
validation for these networks exceeds 0.99. Ad-
ditionally, Table 1 shows the correlation coeffi  -
cients R (for the entire data set) between the data 
obtained as a result of the conducted tests and 
those obtained as a result of modeling for indi-
vidual roughness parameters Ra, Rz, RSm. While 
analyzing R correlation, it can be concluded that 
the mutual correlation between the experimental 
data and the data predicted for the RBF network 
is at a very high level (above 0.99).

For a more detailed comparison of the sur-
face roughness parameters of the RBF and MLP 

Table 1. Network parameters obtained as a result of Ra, Rz, RSm modeling
Modeled surface 

roughness parameters Ra Rz RSm

Network name RBF 2-6-1 MLP 2-8-1 RBF 2-5-1 MLP 2-7-1 RBF 2-8-1 MLP 2-8-1

Quality ( Training) 0.9986 0.8674 0.9973 0.8851 0.9984 0.9882

Quality (Validation) 0.9931 0.9267 0.9925 0.9143 0.9932 0.9854

SS (Training) 0.0167 1.5566 0.8704 35.9328 59.7927 384.4812

SS (Validation) 0.0850 0.3032 3.4093 7.3036 197.5763 490.3510

Learning algorithm RBFT BFGS 72 RBFT BFGS 33 RBFT BFGS 651

R(i) correlation 0.9966 0.8776 0.9969 0.8924 0.9947 0.9863

Fig. 7. Correlation graph of comparison between the modeling and experimental 
results of the Ra parameter for a) RBF, b) MPL networks

b)a)
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networks, the fi gures below show the correlation 
graphs of the dependence of individual roughness 
parameters obtained experimentally and as a re-
sult of modeling with RBF and MPL networks – 
for Ra (Fig. 7), Rz (Fig. 8), RSm (Fig. 9). 

The analysis of the graphs above confi rms that 
more suited results for each surface roughness pa-
rameters were obtained for the RBF network. Addi-
tionally, it can be concluded that artifi cial neural net-
works are a suitable tool to predict the surface rough-
ness parameters obtained after milling the AZ91D 
magnesium alloy with the use of the HSS tool.

As a result of the modeling, it was possible to 
predict the analyzed roughness parameters, i.e. Ra, 
Rz, RSm. Trained RBF networks were used for this 
purpose. By introducing new data into the Statis-
tica program (input data in the form of machining 
parameters: feed per tooth and axial depth of cut), 
the generated networks resulted in the predicted Ra, 
Rz and RSm parameters. The results of the network 
operation are presented for the RBF 2-6-1 net-
work (Ra parameter) – Fig. 10a, for the RBF 2-5-1 

network (Rz parameter) – Fig. 10b, and for the RBF 
2-8-1 network (RSm parameter) – in Fig. 10c.

As a result of the modeling of the surface 
roughness parameters – Ra, Rz, RSm – and the 
prediction made, it can be concluded that the ob-
tained RBF networks are characterized by a satis-
factory ability to predict these parameters. This is 
confi rmed by, among others, R correlation value 
at 0.99, high quality of network learning and vali-
dation at 0.99, as well as learning and validation 
errors. Comparing the experimental and simula-
tion data of the values of the individual surface 
roughness parameters, it can be concluded that 
the value of the relative error does not exceed 
15%, which proves that the net is well-trained.

CONCLUSIONS

The main aim of the research – and a certain 
novelty – was to obtaining the lowest possible 
surface roughness (high quality of surface) using 

Fig. 8. Correlation graph of comparison between the modeling and experimental 
results of  the Rz parameter for a) RBF, b) MPL networks 

Fig. 9. Correlation graph of comparison between the modeling and experimental 
results of the RSm parameter for a) RBF, b) MPL networks

b)a)

b)a)
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a commonly available HSS cutter. The conduct-
ed research shows that it is possible to carry out 
the machining processes that enable obtaining 
an average surface quality (defi ned by rough-
ness parameters, i.e. Ra, Rz, RSm, Rsk). This 
broadened the current understanding of rough-
ness after milling of magnesium alloys. Anoth-
er novelty is the high versatility of the created 
models and the possibility of extrapolating the 
results with an acceptable error rate for the in-
put variables outside the tested area. However, 
the limitation of the models is the assumption 
that the tool and the material of the workpiece 
are stable, which, despite the advantages shown 
above, signifi cantly limits their use for predict-
ing 2D surface roughness when machining other 
materials and using other tools. 

In connection with the conducted experimen-
tal research and training of artifi cial neural net-
works, the following conclusions can be drawn. 
The change of machining parameters (fz, ap) infl u-
ences the increase of the surface roughness pa-
rameters defi ned by the parameters: Ra, Rz, RSm. 
In most cases, the Rsk parameter takes negative 

values; this is characteristic for the surfaces with 
more intense friction and indicative of fl at-topped 
distribution. For modeling surface roughness pa-
rameters obtained after milling the AZ91D magne-
sium alloy with the use of the HSS tool, the RBF 
neural network turned out to be superior to MLP. 
For the RBF network, compared to MLP, the qual-
ity of learning and validation is higher, and the er-
rors are smaller. The network for the Ra parameter 
(RBF 2-6-1) reached the learning quality at the 
level of 0.9986, and the validation – 0.9931, for 
the Rz parameter (RBF 2-5-1) the learning quality 
– 0.9973, validation – 0.9925, and for the RSm pa-
rameter (RBF 2-8-1) the learning quality – 0.9984, 
and the validation – 0.9932. In the case of errors, 
they are as follows: for Ra SS (Training) – 0.0167, 
SS (Validation) – 0.0850, for Rz SS (Training) – 
0.8704, SS (Validation) – 3.4093, and for RSm SS 
(Training) – 59.7927, SS (Validation) – 197.5763. 
The network obtained as a result of the surface 
roughness parameters modeling shows a satisfac-
tory predictive ability, as evidenced by the obtained 
R correlation values. They are R(Ra) = 0.9966, R(Rz)
= 0.9969 and R(RSm) = 0.9947. It can therefore be 

Fig. 10. The network performance results for the parameter: 
a) Ra – RBF 2-6-1, b) Rz – RBF 2-5-1, c) RSm – RBF 2-8-1
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concluded that artificial neural networks are an 
effective tool that can be used to predict surface 
roughness parameters. Trained networks show 
the relationships between the input data (fz and ap) 
and the output data (Ra, Rz, RSm parameters), 
enabling the determination of the appropriate val-
ues of the analyzed surface roughness parameters 
after entering the set machining parameters into 
the network. Modeling of processes can be the 
basis for creating the tools helpful in the work of 
a technologist when determining the conditions 
of the machining process in order to obtain the as-
sumed surface roughness. In addition, it can save 
time and effort as well as eliminate the costs that 
would have to be incurred in the case of further 
machining trials.

In the broadly understood workshop practice, 
it may be most useful to define such machining 
conditions for which milling can be machining as 
finishing, and constitute a very effective, efficient 
and safe process (risk of chip ignition). Industrial 
companies are not able (due to the production 
process relied on) to perform tests on workpieces. 
Therefore, the presented research papers may be 
valuable due to the possibility of their application 
in the industrial practice.
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