PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene synthesis: a Review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene has achieved a great amount of popularity and interest from the science world because of its extraordinary physical, mechanical and thermal properties. Graphene is an allotrope of carbon, having one-atom-thick planar sheets of sp2 bonded carbon atoms densely packed in a honeycomb crystal lattice. Many methods to synthesize graphene have been developed over a short period and we believe it is necessary to create a list of the most notable approaches. This article focuses on the methods to synthesize graphene in an attempt to summarize and document advancements in the synthesis of graphene research and future prospects.
Słowa kluczowe
Wydawca
Rocznik
Strony
566--578
Opis fizyczny
Bibliogr. 121 poz., rys., tab.
Twórcy
autor
  • Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
autor
  • Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
autor
  • Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
Bibliografia
  • [1] GEIM A.K., NOVOSELOV K.S., Nat Mater., 6 (2007), 183.
  • [2] ALLEN M.J., TUNG V.C., KANER R.B., Chem. Rev., 110 (2009), 132.
  • [3] ENOKI T., SUZUKI M., ENDO M., Graphite Intercalation Compounds and Applications, Oxford University Press, New York, 2003.
  • [4] DELHAES P., Graphite and precursors, CRC Press, Amsterdam, 2001.
  • [5] BOEHM H.P., SETTON R., STUMPP E., Pure. Appl. Chem., 66 (1994), 1893.
  • [6] CASTILLO-MARTINEZ E., CARRETERO-GONZALEZ J., SOVICH J., LIMA M.D., J. Mater. Chem. A, 2 (2014), 221.
  • [7] PAULING L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, Cornell University Press, Ithaca (NY), 1960.
  • [8] GEIM A.K., Science, 324 (2009), 1530.
  • [9] KOTOV N.A., Nature, 442 (2006), 254.
  • [10] RAO C., BISWAS K., SUBRAHMANYAM K., GOVINDARAJ A., J. Mater. Chem., 19 (2009), 2457.
  • [11] SOLDANO C., MAHMOOD A., DUJARDIN E., Carbon, 48 (2010), 2127.
  • [12] KRISHNAMOORTHY K., KIM G.-S., KIM S.J., Ultrason. Sonochem., 20 (2013), 644.
  • [13] EDWARDS R.S., COLEMAN K.S., Nanoscale, 5 (2013) 38.
  • [14] WARNER J.H., SCH¨A FFEL F., BACHMATIUK A., R¨UMMELI M.H., Graphene: Fundamentals and emergent applications, Elsevier, Oxford, 2012.
  • [15] NOVOSELOV K.S., GEIM A.K., MOROZOV S., JIANG D., ZHANG Y., DUBONOS S., Science, 306 (2004), 666.
  • [16] DATO A., RADMILOVIC V., LEE Z., PHILLIPS J., FRENKLACH M., Nano Lett., 8 (2008), 2012.
  • [17] REINA A., JIA X., HO J., NEZICH D., SON H., BULOVIC V., Nano Lett., 9 (2008), 30.
  • [18] VERDEJO R., BERNAL M.M., ROMASANTA L.J., LOPEZ-MANCHADO M.A., J. Mater. Chem., 21 (2011), 3301.
  • [19] PARK S., RUOFF R.S., Nat. Nanotechnol., 4 (2009), 217.
  • [20] SEGAL M., Nat. Nanotechnol., 4 (2009), 612.
  • [21] GEIM A.K., MACDONALD A.H., Phys. Today, 60 (8) (2007), 35.
  • [22] SHENDEROVA O., ZHIRNOV V., BRENNER D., Crit. Rev. Solid State, 27 (2002), 227.
  • [23] SAKAMOTO J., HEIJST VAN J., LUKIN O., SCHL¨UTER A.D., Angew. Chem. Int. Edit., 48 (2009), 1030.
  • [24] MEYER J.C., GEIM A.K., Nature, 446 (2007), 60.
  • [25] MITTAL G., DHAND V., RHEE K.Y., PARK S.-J., LEE W.R., J. Ind. Eng. Chem., 21 (2015), 11.
  • [26] NOVOSELOV K., JIANG D., SCHEDIN F., BOOTH T., KHOTKEVICH V., MOROZOV S., P. Natl. Acad. Sci. USA, 102 (2005), 10451.
  • [27] JAYASENA B., SUBBIAH S., Nanoscale Res Lett., 6 (2011), 95.
  • [28] PATON K.R., VARRLA E., BACKES C., SMITH R.J., KHAN U., Nat. Mater., 13 (2014), 624.
  • [29] MCALLISTER M.J., LI J.-L., ADAMSON D.H., SCHNIEPP H.C., ABDALA A.A., LIU J., Chem. Mater., 19 (2007), 4396.
  • [30] ZHANG Y., LI D., TAN X., ZHANG B., RUAN X., LIU H., Carbon, 54 (2013), 143.
  • [31] ZHAN D., SUN L., NI Z.H., LIU L., FAN X.F., WANG Y., Adv. Funct. Mater., 20 (2010), 3504.
  • [32] LEE H., KANG J., CHO M.S., CHOI J.-B., LEE Y., J. Mater. Chem., 21 (2011), 18215.
  • [33] BRUMFIEL G., Nature, 10 (2009), 1038.
  • [34] JIAO L., ZHANG L., WANG X., DIANKOV G., DAI H., Nature, 458 (2009), 877.
  • [35] KOSYNKIN D.V., HIGGINBOTHAM A.L., SINITSKII A., LOMEDA J.R., DIMIEV A., PRICE B.K., Nature, 458 (2009), 872.
  • [36] CHEN J., CHEN L., ZHANG Z., LI J., WANG L., JIANG W., Carbon, 50 (2012), 1934.
  • [37] CHOUCAIR M., THORDARSON P., STRIDE J.A., Nat. Nanotechnol., 4 (2008), 30.
  • [38] BISWAL M., BANERJEE A., DEO M., OGALE S., Energ. Environ Sci., 6 (2013), 1249.
  • [39] CHEN G., WU D., WENG W., WU C., Carbon, 41 (2003), 619.
  • [40] RAMANATHAN T., STANKOVICH S., DIKIN D., LIU H., SHEN H., NGUYEN S., J. Polym. Sci. Pol. Phys., 45 (2007), 2097.
  • [41] DREYER D.R., PARK S., BIELAWSKI C.W., RUOFF R.S., Chem. Soc. Rev., 39 (2010), 228.
  • [42] ESWARAIAH V., ARAVIND S.S.J., RAMAPRABHU S., J. Mater. Chem., 21 (2011), 6800.
  • [43] DIKIN D.A., STANKOVICH S., ZIMNEY E.J., PINER R.D., Nature, 448 (2007), 457.
  • [44] NAIR R., WU H., JAYARAM P., GRIGORIEVA I., GEIM A., Science, 335 (2012), 442.
  • [45] SHEN B., LU D.D., ZHAI W.T., ZHENG W.G., J. MATER. CHEM. C, 1 (2013), 50.
  • [46] GURUNATHAN S., HAN J.W., EPPAKAYALA V., KIM J.-H., Int. J. Nanomed., 8 (2013), 1015.
  • [47] PARVEZ K., LI R., PUNIREDD S.R., HERNANDEZ Y., HINKEL F., WANG S., ACS Nano, 7 (2013), 3598.
  • [48] LU J., YANG J.-X., WANG J., LIM A., WANG S., LOH K.P., ACS Nano, 3 (2009), 2367.
  • [49] HERNANDEZ Y., NICOLOSI V., LOTYA M., BLIGHE F.M., SUN Z., DE S., Nat. Nanotechnol., 3 (2008), 563.
  • [50] ALZARI V., NUVOLI D., SCOGNAMILLO S., PICCININI M., GIOFFREDI E., MALUCELLI G., J. Mater. Chem., 21 (2011), 8727.
  • [51] NUVOLI D., VALENTINI L., ALZARI V., SCOGNAMILLO S., BON S.B., PICCININI M., J. Mater. Chem., 21 (2011), 3428.
  • [52] ZHOU M., TIAN T., LI X.F., SUN X.D., ZHANG J., CUI P., Int. J. Electrochem. Sc., 9 (2014), 810.
  • [53] LOTYA M., HERNANDEZ Y., KING P.J., SMITH R.J., NICOLOSI V., KARLSSON L.S., J. Am. Chem. Soc., 131 (2009), 3611.
  • [54] LIU L., ZHAI J., ZHU C., GAO Y., WANG Y., HAN Y., Biosens. Bioelectron., 63 (2015), 483.
  • [55] XU Y., BAI H., LU G., LI C., SHI G., J. Am. Chem. Soc., 130 (2008), 5856.
  • [56] HAO R., QIAN W., ZHANG L., HOU Y., Chem. Commun., 48 (2008), 6576.
  • [57] PATIL A.J., VICKERY J.L., SCOTT T.B., MANN S., Adv. Mater., 21 (2009), 3159.
  • [58] ENGLERT J.M., R¨O HRL J., SCHMIDT C.D., GRAUPNER R., HUNDHAUSEN M., HAUKE F., Adv. Mater., 21 (2009), 4265.
  • [59] SU Q., PANG S., ALIJANI V., LI C., FENG X., M¨ULLEN K., Adv. Mater., 21 (2009), 3191.
  • [60] WOLTORNIST S.J., OYER A.J., CARRILLO J.-M.Y., DOBRYNIN A.V., ADAMSON D.H., ACS Nano, 7 (2013), 7062.
  • [61] DENG C., HU H., GE X., HAN C., ZHAO D., SHAO G., Ultrasonics., 18 (2011), 932.
  • [62] PINJARI D.V., PANDIT A.B., Ultrasonics., 18 (2011), 1118.
  • [63] SAFARIFARD V., MORSALI A., Ultrasonics., 19 (2012), 823.
  • [64] RAMADOSS A., KIM S.J., J. Alloy. Compd., 544 (2012), 115.
  • [65] LEE J.K., LEE K., LEE K.I., GAP L.J., IL L.G., Ball-milled graphene nano-powder or ribbon purifying method, involves separating magnetic impurities during stirring suspension using magnet, where impurities are incorporated into graphene powder during ball-milling, Korea Institute of Science and Technology, Seoul, p. 7.
  • [66] LEON V., QUINTANA M., HERRERO M.A., FIERRO J.L.G., HOZ DE LA A., PRATO M., Chem. Commun., 47 (2011), 10936.
  • [67] LIN T., TANG Y., WANG Y., BI H., LIU Z., HUANG F., Energ. Environ Sci., 6 (2013), 1283.
  • [68] BORAH M., DAHIYA M., SHARMA S., MATHUR R.B., DHAKATE S.R., Mater. Focus, 3 (2014), 300.
  • [69] LIU L., XIONG Z., HU D., WU G., CHEN P., Chem. Commun., 49 (2013), 7890.
  • [70] PAN D., WANG S., ZHAO B., WU M., ZHANG H., WANG Y., Chem. Mater., 21 (2009), 3136.
  • [71] EL-KADY M.F., STRONG V., DUBIN S., KANER R.B., Science, 335 (2012), 1326.
  • [72] MILLER J.R., Science, 335 (2012), 1312.
  • [73] COTE L.J., CRUZ-SILVA R., HUANG J., J. Am. Chem. Soc., 131 (2009), 11027.
  • [74] GAO E., WANG W., SHANG M., XU J., Phys. Chem. Chem. Phys., 13 (2011), 2887.
  • [75] ABDELSAYED V., MOUSSA S., HASSAN H.M., ALURI H.S., COLLINSON M.M., EL-SHALL M.S., J. Phys. Chem. Lett., 1 (2010), 2804.
  • [76] HUANG L., LIU Y., JI L.-C., XIE Y.-Q., WANG T., SHI W.-Z., Carbon, 49 (2011), 2431.
  • [77] CHICHKOV B., MOMMA C., NOLTE S., ALVENSLEBEN VON F., T¨U NNERMANN A., Appl. Phys. A, 63 (1996), 109.
  • [78] SOKOLOV D.A., SHEPPERD K.R., ORLANDO T.M., J. Phys. Chem. Lett., 1 (2010), 2633.
  • [79] TRUSOVAS R., RATAUTAS K., RAˇC IUKAITIS G., BARKAUSKAS J., STANKEVIˇC IEN˙E I., NIAURA G., Carbon, 52 (2013), 574.
  • [80] ZHOU Y., BAO Q., VARGHESE B., TANG L.A.L., TAN C.K., SOW C.H., Adv. Mater., 22 (2010), 67.
  • [81] AMINI S., GARAY J., LIU G., BALANDIN A.A., ABBASCHIAN R., J. Appl. Phys., 108 (2010), 094321.
  • [82] SUTTER P.W., FLEGE J.-I., SUTTER E.A., Nat. Mater., 7 (2008), 406.
  • [83] PLETIKOSI´C I., KRALJ M., PERVAN P., BRAKO R., CORAUX J., N’DIAYE A., Phys. Rev. Lett., 102 (2009), 056808.
  • [84] WEATHERUP R.S., BAYER B.C., BLUME R., DUCATI C., BAEHTZ C., SCHL¨O GL R., Nano Lett., 11 (2011), 4154.
  • [85] KIM K.S., ZHAO Y., JANG H., LEE S.Y., KIM J.M., KIM K.S., Nature, 457 (2009), 706.
  • [86] ZHANG Y., ZHANG L., ZHOU C., Accounts Chem. Res., 46 (2013), 2329.
  • [87] BAE S., KIM H., LEE Y., XU X., PARK J.-S., ZHENG Y., Nat. Nanotechnol., 574 (2010), 574.
  • [88] RAFIEE J., MI X., GULLAPALLI H., THOMAS A.V., YAVARI F., SHI Y., Nat. Mater., 11 (2012), 217.
  • [89] LENSKI D.R., FUHRER M.S., J. Appl. Phys., 110 (2011), 013720.
  • [90] LI X., CAI W., AN J., KIM S., NAH J., YANG D., Science, 324 (2009), 1312.
  • [91] LEVENDORF M.P., RUIZ-VARGAS C.S., GARG S., PARK J., Nano Lett., 9 (2009), 4479.
  • [92] WASSEI J.K., MECKLENBURG M., TORRES J.A., FOWLER J.D., REGAN B., KANER R.B., Small, 8 (2012), 1415.
  • [93] SUTTER P., Nat. Mater. 8 (2009), 171.
  • [94] OHTA T., BOSTWICK A., MCCHESNEY J., SEYLLER T., HORN K., ROTENBERG E., Phys. Rev. Lett., 98 (2007), 206802.
  • [95] MOROZOV S., NOVOSELOV K., KATSNELSON M., SCHEDIN F., PONOMARENKO L., JIANG D., Phys. Rev. Lett., 97 (2006), 016801.
  • [96] JOBST J., WALDMANN D., SPECK F., HIRNER R., MAUDE D.K., SEYLLER T., http://arxiv.org/ abs/0908.1900,2009.
  • [97] SHEN T., GU J., XU M., WU Y., BOLEN M., CAPANO M., Appl. Phys. Lett., 95 (2009), 172105.
  • [98] WU X., HU Y., RUAN M., MADIOMANANA N.K., HANKINSON J., SPRINKLE M., Appl. Phys. Lett., 95 (2009), 223108.
  • [99] ALEXANDER-WEBBER J., BAKER A., JANSSEN T., TZALENCHUK A., LARA-AVILA S., KUBATKIN S., Phys. Rev. Lett., 111 (2013), 096601.
  • [100] TZALENCHUK A., LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYV¨A J¨ARVI M., YAKIMOVA R., Nat. Nanotechnol., 5 (2010), 186.
  • [101] LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYV¨AJ¨A RVI M., YAKIMOVA R., FAL’KO V., arXiv:09091193, 2009.
  • [102] HASS J., VARCHON F., MILLAN-OTOYA J.-E., SPRINKLE M., SHARMA N., HEER DE W.A., Phys. Rev. Lett., 100 (2008), 125504.
  • [103] LIN Y.-M., DIMITRAKOPOULOS C., JENKINS K.A., FARMER D.B., CHIU H.-Y., GRILL A., Science, 327 (2010), 662.
  • [104] CHAKRABARTI A., LU J., SKRABUTENAS J.C., XU T., XIAO Z., MAGUIRE J.A., J. Mater. Chem., 21 (2011), 9491.
  • [105] BLAKE P., BRIMICOMBE P.D., NAIR R.R., BOOTH T.J., JIANG D., SCHEDIN F., Nano Lett., 8 (2008), 1704.
  • [106] EDA G., FANCHINI G., CHHOWALLA M., Nat. Nanotechnol., 3 (2008), 270.
  • [107] LI D., M¨U LLER M.B., GILJE S., KANER R.B., WALLACE G.G., Nat. Nanotechnol., 3 (2008), 101.
  • [108] RAHAMAN M., ISMAIL A.F., MUSTAFA A., Polym. Degrad. Stabil., 92 (2007), 1421.
  • [109] KO Y.U., CHO S.-R., CHOI K.S., PARK Y., KIM S.T., KIM N.H., J. Mater. Chem., 22 (2012), 3606.
  • [110] YAMAGUCHI H., EDA G., MATTEVI C., KIM H., CHHOWALLA M., ACS Nano., 4 (2010), 524.
  • [111] NIKOLAEV P., BRONIKOWSKI M.J., BRADLEY R.K., ROHMUND F., COLBERT D.T., SMITH K., Chem. Phys. Lett., 313 (1999), 91.
  • [112] LIANG F., SADANA A.K., PEERA A., CHATTOPADHYAY J., GU Z., HAUGE R.H., Nano Lett., 4 (2004), 1257.
  • [113] YAN Z., PENG Z., CASILLAS G., LIN J., XIANG C., ZHOU H., ACS Nano, 8 (2014), 5061.
  • [114] IRISSOU E., LEGOUX J.-G., RYABININ A., JODOIN B., MOREAU C., J. Therm. Spray Techn., 17 (2008), 495.
  • [115] WANG X., ZHI L., M¨U LLEN K., Nano Lett. 8 (2008), 323.
  • [116] LIANG X., CHANG A.S.P., ZHANG Y., HARTENECK B.D., CHOO H., OLYNICK D.L., CABRINI S., Nano Lett., 9 (1) (2009), 467.
  • [117] STANKOVICH S., DIKIN D.A., PINER R.D., KOHLHAAS K.A., KLEINHAMMES A., JIA Y., WU Y., NGUYEN S.T., RUOFF R.S., Carbon, 45 (7) (2007), 1558.
  • [118] WATCHAROTONE S., DIKIN D.A., STANKOVICH S., PINER R., JUNG I., DOMMETT G.H.B., EVMENENKO G., WU S.-E., CHEN S.-F., LIU CH.,-P., NGUEN S.T., RUOFF R.S., Nano Lett., 7 (7) (2007), 1888.
  • [119] LI Z., WANG J., LIU X., LIU S., OU J., YANG S.,, J. Mater. Chem., 21 (2011), 3397.
  • [120] G´O MEZ-NAVARRO C., WEITZ R.T., BITTNER A.M., SCOLARI M., MEWS A., BURGHARD M., KERN N., Nano Lett., 7 (11) (2007), 3499.
  • [121] SHEN H., China’s Graphene industry set to skyrocket in 2014, http://investorintel.com/graphite-grapheneintel/ chinas-graphene-industry-starts-take-2014/, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2cd0872-9c95-4a1d-8ad3-f9f4f54c7393
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.