PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efect of heat treatment parameters on microstructure evolution, tensile strength, wear resistance, and fracture behavior of Ni-Ti multilayered composites produced by cross‑accumulative roll bonding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The last decades have seen a huge growth in the investigation of intermetallic compounds at the interfaces of laminated composites due to their useful features. In this research, efects of the formation of intermetallic compounds on tensile properties and wear resistance of Ni/Ti composites produced by cross-accumulative roll bonding (CARB) process have been examined at diferent annealing times and temperatures. Scanning electron microscopy (SEM) images demonstrated that the layers were well bonded together, but Ni layers experienced instabilities in light of plastic deformation. The EBSD results showed lamellar structure and crystallographic texture on Ti and Ni layers during plastic deformation. According to X-ray difractometer (XRD) and energy-dispersive spectrometer (EDS) analyses, NiTi2 and NiTi were present in all annealed samples. The thickness of intermetallic compounds grew with an increase in annealing temperature and time. However, this growth led to a decrease in tensile strength while the values of elongation fuctuated. Based on the results of the wear test, the composite became more resistant to wear when the thickness of intermetallic layers increased. The surfaces of these layers with less roughness and lower coefcients of friction facilitated the movement of steel pin on samples during the wear test. Furthermore, wear mechanisms of adhesion, abrasion, and delamination were observed, and they were more noticeable at higher loads and lower annealing temperatures and times.
Rocznik
Strony
art. no. e27, 2023
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Xijing University, Xi’an 710123, ShaanXi, China
autor
  • School of Electronic Information, Xijing University, Xi’an 710123, ShaanXi, China
  • Department of Materials Science and Engineering, Shiraz University of Technology, Modarres Blvd, Shiraz 71557-13876, Iran
  • Department of Materials Science and Engineering, Sahand University of Technology, Tabriz, Iran
  • Łukasiewicz Research Network-Krakow Institute of Technology, Zakopiańska 73 Street, 30-418 Kraków, Poland
  • AGH University of Science and Technology, International Centre of Electron Microscopy for Materials Science and Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30 Avd, 30-059 Krakow, Poland
  • Łukasiewicz Research Network-Krakow Institute of Technology, Zakopiańska 73 Street, 30-418 Kraków, Poland
  • Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Bai Y, Nardi DC, Zhou X, Picon RA, Florez-Lopez J. A new comprehensive model of damage for fexural subassemblies prone to fatigue. Comput Struct. 2021;256:106639.
  • 2. Cui W, Li X, Li X, Si T, Lu L, Ma T, et al. Thermal performance of modifed melamine foam/graphene/parafin wax composite phase change materials for solar-thermal energy conversion and storage. J Clean Prod. 2022;367:133031.
  • 3. Gao T, Li C, Wang Y, Liu X, An Q, Li HN, et al. Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos Struct. 2022;286:115232.
  • 4. Gurau G, Gurau C, Fernandes FMB, Alexandru P, Sampath V, Marin M, et al. Structural characteristics of multilayered Ni-Ti nanocomposite fabricated by high speed high pressure torsion (HSHPT). Metals. 2020;10(12):1629.
  • 5. Liang L, Xu M, Chen Y, Zhang T, Tong W, Liu H, et al. Effect of welding thermal treatment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting. Mater Sci Eng, A. 2021;819:141507.
  • 6. Zhong Y, Xie J, Chen Y, Yin L, He P, Lu W. Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer. Mater Lett. 2022;306:130896.
  • 7. Assari AH, Eghbali B. Solid state difusion bonding characteristics at the interfaces of Ti and Al layers. J Alloy Compd. 2019;773:50-8.
  • 8. Fronczek D, Chulist R, Szulc Z, Wojewoda-Budka J. Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads. Mater Lett. 2017;198:160-3.
  • 9. Huang J, Tayyebi M, Assari AH. Efect of SiC particle size and severe deformation on mechanical properties and thermal conductivity of Cu/Al/Ni/SiC composite fabricated by ARB process. J Manuf Process. 2021;68:57-68.
  • 10. Tayyebi M, Eghbali B. Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process. Int J Miner Metall Mater. 2018;25(3):357-64.
  • 11. Tayyebi M, Rahmatabadi D, Karimi A, Adhami M, Hashemi R. Investigation of annealing treatment on the interfacial and mechanical properties of Al5052/Cu multilayered composites subjected to ARB process. J Alloy Compd. 2021;871:159513.
  • 12. Shi J, Cao Z, Wei M, Pan G, Xu L, Meng X. Anomalous softening behavior in Ti/Ni multilayers with ultra-high hardness. Mater Sci Eng, A. 2014;618:385-8.
  • 13. Ding H-S, Lee J-M, Lee B-R, Kang S-B, Nam T-H. Effects of subsequent heat treatment on the shape memory behaviors of a Ti/Ni sheet fabricated by bonding and cold rolling of Ti/Ni multilayers. Mater Sci Eng, A. 2007;444(1-2):265-70.
  • 14. Zhang Y, Cheng X, Cai H, Zhou S, Wang P, Yin J. The effects of thickness of original Ti foils on the microstructures and mechanical properties of Ti2Ni/TiNi laminated composites. Mater Sci Eng, A. 2017;684:292-302.
  • 15. Khosravi G, Sohi MH, Ghasemi H, Karazmoudeh NJ. 2021 Comparative tribological study of NiTi difusion coated titanium with pure titanium.
  • 16. Wachowski M, Zygmuntowicz J, Kosturek R, Konopka K, Kaszuwara W. Manufacturing of Al2O3/Ni/Ti composites enhanced by intermetallic phases. Materials. 2021;14(13):3510.
  • 17. Avazzadeh M, Alizadeh M, Tayyebi M. Structural, mechanical and corrosion evaluations of Cu/Zn/Al multilayered composites subjected to CARB process. J Alloy Compd. 2021;867:158973.
  • 18. Merriman C, Field D, Trivedi P. Orientation dependence of dislocation structure evolution during cold rolling of aluminum. Mater Sci Eng, A. 2008;494(1-2):28-35.
  • 19. Wang Y, Tayyebi M, Assari A. Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-laminated composites produced by cross-accumulative roll-bonding process. Archiv Civil Mech Eng. 2022;22(1):1-14.
  • 20. Hughes DA, Hansen N. Microstructure and strength of nickel at large strains. Acta Mater. 2000;48(11):2985-3004.
  • 21. Polkowski W, Jóźwik P, Karczewski K, Bojar Z. Evolution of crystallographic texture and strain in a fne-grained Ni3Al (Zr, B) intermetallic alloy during cold rolling. Archiv Civil Mech Eng. 2014;14(4):550-60.
  • 22. Zeng L, Gao R, Fang Q, Wang X, Xie Z, Miao S, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 2016;110:341-51.
  • 23. Zhang Y, Li C, Jia D, Zhang D, Zhang X. Experimental evaluation of the lubrication performance of MoS2/CNT nanofuid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tools Manuf. 2015;99:19-33.
  • 24. Zhao Y, Liu K, Hou H, Chen L-Q. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase feld study. Mater Design. 2022;216:110555.
  • 25. Polkowski W, Polkowska A, Zasada D. Characterization of high strength nickel thin sheets fabricated by diferential speed rolling method. Mater Charact. 2017;130:173-80.
  • 26. Simoes FJ, de Sousa RJA, Gracio JJ, Barlat F, Yoon JW. Mechanical behavior of an asymmetrically rolled and annealed 1050-O sheet. Int J Mech Sci. 2008;50(9):1372-80.
  • 27. Wang Y, Huang J. Texture analysis in hexagonal materials. Mater Chem Phys. 2003;81(1):11-26.
  • 28. Milosavljević M, Toprek D, Obradović M, Grce A, Peruško D, Dražič G, et al. Ion irradiation induced solid-state amorphous reaction in Ni/Ti multilayers. Appl Surf Sci. 2013;268:516-23.
  • 29. Zhang C, Liu W. Non-parabolic Al3Ti intermetallic layer growth on aluminum-titanium interface at low annealing temperatures. Mater Lett. 2019;256:126624.
  • 30. Zhang C, Liu W. Abnormal effect of temperature on intermetallic compound layer growth at aluminum-titanium interface: the role of grain boundary difusion. Mater Lett. 2019;254:1-4.
  • 31. Zhang C, Robson JD, Haigh SJ, Prangnell PB. Interfacial segregation of alloying elements during dissimilar ultrasonic welding of AA6111 aluminum and Ti6Al4V titanium. Metall Mater Trans A. 2019;50(11):5143-52.
  • 32. Gao Q, Wang W, Yi G, Wang B, Feng X, Shi P, et al. High temperature and room temperature tribological behaviors of in-situ carbides reinforced Ni-based composites by reactive sintering Ni and Ti2AlC precursor. Wear. 2022;488:204165.
  • 33. Zhang B, Zhang Z, Zhao T, Zhang D, Cheng J, Wang W, et al. Effect of temperature on the interfacial evolution of Ti/Ni multi-layered composites fabricated by ARB. J Alloy Compd. 2019;803:265-76.
  • 34. Assari A, Eghbali B. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding. Met Mater Int. 2016;22(5):915-23.
  • 35. Tayyebi M, Alizadeh M. A novel two-step method for producing Al/Cu functionally graded metal matrix composite. J Alloy Compd. 2022;911:165078.
  • 36. Akbarpour M, Alipour S, Najaf M, Ebadzadeh T, Kim H. Microstructural characterization and enhanced hardness of nanostructured Ni3Ti-NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process. Intermetallics. 2021;131:107119.
  • 37. Luo J, Yarigarravesh M, Assari AH, Amin NH, Tayyebi M, Paidar M. Investigating the solid-state difusion at the interface of Ni/Ti laminated composite. J Manuf Proc. 2022;75:670-81.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2cc28c3-6265-4fc7-bc82-f4ce2dcc0ca2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.