Identyfikatory
Warianty tytułu
Trójwymiarowe drukowanie z betonu – regionalne możliwości i wyzwania
Języki publikacji
Abstrakty
The article aims at identifying scientific and industrial development prospects in 3D concrete printing with focus on regional potential. The main research method consisted in a study of field literature enhanced by a bibliometric survey and analysis of means of intellectual property protection. For the bibliometric investigation there was collected detailed data about publications regarding concrete additive manufacturing. The gathered information included among others: year of publication, scope, authors with affiliations, citations, etc. The data was analysed in sets and subsets with the objective of identification of mutual relations and influence paths. Tag cloud creation and analysis was also performed as an auxiliary tool for the investigation. Additionally, a patent and intellectual property database referring to concrete printing was studied to provide some insight into industrial implementation and commercialisation potential. The results allowed for concluding which aspects seemed to be most significant for the development of the concrete printing science and application. Additionally, propositions of paths for further research and development were determined. The presented results could be a used as guidance reference for regional scientific and industrial partners.
Artykuł ma na celu zidentyfikowanie naukowych i przemysłowych perspektyw rozwoju druku 3D z betonu, ze szczególnym uwzględnieniem potencjału regionalnego. Główną metodą badawczą było studium literatury przedmiotu wzbogacone o ankietę bibliometryczną i analizę dotyczącą środków ochrony własności intelektualnej. Na potrzeby badania bibliometrycznego zebrano szczegółowe dane na temat publikacji dotyczących wytwarzania przyrostowego betonu. Zebrane informacje obejmowały między innymi: rok publikacji, zakres, autorów wraz z afiliacjami, cytowania itp. Dane zostały przeanalizowane w zadanych zbiorach i podzbiorach w celu identyfikacji wzajemnych relacji i ścieżek wpływu. Jako narzędzie pomocnicze do studium, utworzono chmurę tagów i przeprowadzono jej analizę. Ponadto, przeanalizowano bazę danych patentów oraz dokumentów dotyczących ochrony własności intelektualnej odnoszących się do drukowania z betonu, aby zapewnić pewien wgląd w potencjał do wdrożeń przemysłowych i komercjalizacji. Wyniki pozwoliły stwierdzić, które aspekty wydają się być najbardziej istotne dla rozwoju nauki i zastosowania druku 3D z betonu. Określono propozycje kierunków dla dalszych badań, biorąc pod uwagę również wdrożenia przemysłowe. Przedstawione wyniki mogą być wykorzystane jako wytyczne dla partnerów naukowych i przemysłowych z regionu.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
601--618
Opis fizyczny
Bibliogr. 51 poz., il., tab.
Twórcy
autor
- Cracow University of Technology, Faculty of Civil Engineering, Krakow, Poland
autor
- Technical University of Košice, Faculty of Civil Engineering, Košice, Slovakia
Bibliografia
- [1] Y. Shi, Ch. Yan, Y. Zhou, J. Wu, Y. Wang, S. Yu, and Y. Chen, “Overview of additive manufacturing technology and materials”, in Materials for Additive Manufacturing. 3D Printing Technology Series. Elsevier Ltd., 2021, pp. 1-8, doi: 10.1016/B978-0-12-819302-0.00001-8.
- [2] R. Modupe Mahamood, T.C. Jen, S.A. Akinlabi, S. Hassan, K.O. Abdulrahman, and E.T. Akinlabi, “Role of additive manufacturing in the era of Industry 4.0”, in Woodhead Publishing Reviews: Mechanical Engineering Series, Additive Manufacturing, M. Manjaiah, K. Raghavendra, N. Balashanmugam, J. Paulo Davim, Eds. Woodhead Publishing, 2021, pp. 107-126, doi: 10.1016/B978-0-12-822056-6.00003-5.
- [3] ISO/ASTM 52900:2021(E) Additive manufacturing – General principles – Fundamentals and vocabulary. ISO/ASTM International, 2021.
- [4] R. van Woensel, T. van Oirschot, M. Burgmans, M. Mohammadi, and K. Hermans, “Printing Architecture: An Overview of Existing and Promising Additive Manufacturing Methods and Their Application in the Building Industry”, The International Journal of the Constructed Environment, vol. 9, no. 1, 2018, doi: 10.18848/2154-8587/CGP/v09i01/57-81.
- [5] J. Pegna, “Exploratory investigation of solid freeform construction”, Automation in Construction, vol. 5, no. 5, pp. 427-437, 1997, doi: 10.1016/S0926-5805(96)00166-5.
- [6] Y. Chen, S. He, Y. Gan, O. Çopuroğlu, F. Veer, and E. Schlangen, “A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing”, Journal of Building Engineering, vol. 45, 2022, doi: 10.1016/j.jobe.2021.103599.
- [7] A. Tofiluk, “Problems and challenges of the built environment and the potential of prefabricated architecture”, Archives of Civil Engineering, vol. 69, no. 3, pp. 405-424, 2023, doi: 10.24425/ace.2023.146088.
- [8] “A milestone for 3D concrete printing. 3D printed house”. [Online]. Available: https://mense-korte.de/en/3dprinted-house. [Accessed: 24. May. 2024].
- [9] L. Breseghello and R. Naboni, “Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures”, Additive Manufacturing, vol. 56, 2022, doi: 10.1016/j.addma.2022.102872.
- [10] M.K. Mohan, A.V. Rahul, G. De Schutter, and K.V. Tittelboom, “Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review ”, Cement and Concrete Composites, vol. 115, 2021, doi: 10.1016/j.cemconcomp.2020.103855.
- [11] S. Bhooshan, T. Van Mele, Pand . Block, “Morph & Slerp: Shape description for 3D printing of concrete”, in Proceedings of the 5th Annual ACM Symposium on Computational Fabrication (SCF ’20). New York: Association for Computing Machinery, 2020, pp. 1-10, doi: 10.1145/3424630.3425413.
- [12] R.A. Buswell, W.R. Leal de Silva, S.Z. Jones, and J. Dirrenberger, “3D printing using concrete extrusion: A roadmap for research”, Cement and Concrete Research, vol. 112, pp. 37-49, 2018, doi: 10.1016/j.cemconres.2018.05.006.
- [13] G. Ma, R. Buswell, W.R. Leal da Silva, L. Wang, J. Xu, and S.Z. Jones, “Technology readiness: A global snapshot of 3D concrete printing and the frontiers for development”, Cement and Concrete Research, vol. 156, 2022, doi: 10.1016/j.cemconres.2022.106774.
- [14] M. Wesolowski, M. Ruchwa, and S. Rucevskis, “Nonlinear static analysis of truss core sandwich beams in three-point bending test”, Archives of Civil Engineering, vol. 69, no. 4, pp. 459-475, 2023, doi: 10.24425/ace.2023.147670.
- [15] A. Pritchard, “Statistical bibliography or bibliometrics?”, Journal of Documentation, vol. 25, no. 4, pp. 348-349, 1969.
- [16] O. Ellegaard and J.A. Wallin, “The bibliometric analysis of scholarly production: How great is the impact?”, Scientometrics, vol. 105, pp. 1809-1831, 2015, doi: 10.1007/s11192-015-1645-z.
- [17] O. José de Oliveira, F. Francisco da Silva, F. Juliani, L. César Ferreira Motta Barbosa, and T. Vieira Nunhes, “Bibliometric Method for Mapping the State-of-the-Art and Identifying Research Gaps and Trends in Literature: An Essential Instrument to Support the Development of Scientific Projects”, in Scientometrics Recent Advances, S. Kunosic and E. Zerem, Eds. IntechOpen, 2019, doi: 10.5772/intechopen.85856.
- [18] “Advanced Search Query Builder”. [Online]. Available: https://www.webofscience.com/wos/woscc/advancedsearch. [Accessed: 13. Nov. 2023].
- [19] N.J. van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping”, Scientometrics, vol. 84, pp. 523-538, 2010, doi: 10.1007/s11192-009-0146-3.
- [20] C. Birkle, D.A. Pendlebury, J. Schnell, and J. Adams, “Web of Science as a data source for research on scientific and scholarly activity”, Quantitative Science Studies, vol. 1, no. 1, pp. 363-376, 2020, doi: 10.1162/qss_a_00018.
- [21] A. Maddi and L. Baudoin, “The quality of the web of science data: a longitudinal study on the completeness of authors-addresses links”, Scientometrics, vol. 127, pp. 6279-6292, 2022, doi: 10.1007/s11192-022-04525-0.
- [22] “Interreg Central Europe”. [Online]. Available: https://interreg.eu/programme/interreg-central-europe/. [Accessed: 10. Nov. 2023].
- [23] N. Roussel, “Rheological requirements for printable concretes”, Cement and Concrete Research, vol. 112, pp. 76-85, 2018, doi: 10.1016/j.cemconres.2018.04.005.
- [24] Y. Zhang, Y. Zhang, W. She, L. Yang, G. Liu, and Y. Yang, “Rheological and harden properties of the high-thixotropy 3D printing concrete”, Construction and Building Materials, vol. 201, pp. 278-285, 2019, doi: 10.1016/j.conbuildmat.2018.12.061.
- [25] J.J. Sokołowska, P. Woyciechowski, and M. Kalinowski, “Rheological Properties of Lunar Mortars”, Applied Sciences, vol. 11, no. 15, art. no. 6961, 2021, doi: 10.3390/app11156961.
- [26] A.V. Rahul, M. Santhanam, H. Meena, and Z. Ghani, “Mechanical characterization of 3D printable concrete”, Construction and Building Materials, vol. 227, 2019, doi: 10.1016/j.conbuildmat.2019.116710.
- [27] P. Feng, X. Meng, J.-F. Chen, and L. Ye, “Mechanical properties of structures 3D printed with cementitious powders”, Construction and Building Materials, vol. 93, pp. 486-497, 2015, doi: 10.1016/j.conbuildmat.2015.05.132.
- [28] A.J. Babafemi, J.T. Kolawole, M.J. Miah, S.C. Paul, and B. Panda, “A Concise Review on Interlayer Bond Strength in 3D Concrete Printing”, Sustainability, vol. 13, no. 13, art. no. 7137, 2021, doi: 10.3390/su13137137.
- [29] R. Napolitano, D. Forni, C. Menna, D. Asprone, and E. Cadoni, “Dynamic characterization of the layer-interface properties of 3D-printed concrete elements”, Case Studies in Construction Materials, vol. 15, 2021, doi: 10.1016/j.cscm.2021.e00780.
- [30] L. Yang, S.M.E. Sepasgozar, S. Shirowzhan, A. Kashani, and D. Edwards, “Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete”, Automation in Construction, vol. 146, 2023, doi: 10.1016/j.autcon.2022.104671.
- [31] H. Chen, D. Zhang, P. Chen, N. Li, and A. Perrot, “A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing”, Materials, vol. 16, no. 7, art. no. 2661, 2023, doi: 10.3390/ma16072661.
- [32] M. Papachristoforou, V. Mitsopoulos, and M. Stefanidou, “Evaluation of workability parameters in 3D printing concrete”, Procedia Structural Integrity, vol. 10, pp. 155-162, 2018, doi: 10.1016/j.prostr.2018.09.023.
- [33] S. Alonso-Canon, E. Blanco-Fernandez, D. Castro-Fresno, A.I. Yoris-Nobile, and L. Castañon-Jano, “Reinforcements in 3D printing concrete structures”, Archives of Civil and Mechanical Engineering, vol. 23, art no. 25, 2023, doi: 10.1007/s43452-022-00552-z.
- [34] F. Bester, M. van den Heever, J. Kruger, and G. van Zijl, “Reinforcing digitally fabricated concrete: A systems approach review”, Additive Manufacturing, vol. 37, 2021, doi: 10.1016/j.addma.2020.101737.
- [35] V. Mechtcherine and V.N. Nerella, “Integration der Bewehrung beim 3D-Druck mit Beton”, Beton- und Stahlbetonbau, vol. 113, no. 7, pp. 496-504, 2018, doi: 10.1002/best.201800003.
- [36] C. Zhang, V.N. Nerella, A. Krishna, S. Wang, Y. Zhang, V. Mechtcherine, and N. Banthia, “Mix design concepts for 3D printable concrete: A review”, Cement and Concrete Composites, vol. 122, 2021, doi: 10.1016/j.cemconcomp.2021.104155.
- [37] C. Ziejewska, J. Marczyk, K. Korniejenko, et al., “3D Printing of Concrete-Geopolymer Hybrids”, Materials, vol. 15, no. 8, art. no. 2819, 2022, doi: 10.3390/ma15082819.
- [38] S. Skibicki, M. Pułtorak, M. Kaszyńska, M. Hoffmann, E. Ekiert, and D. Sibera, “The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar”, Construction and Building Materials, vol. 335, 2022, doi: 10.1016/j.conbuildmat.2022.127443.
- [39] M. Kaszyńska, S. Skibicki, and M. Hoffmann, “3D Concrete Printing for Sustainable Construction”, Energies, vol. 13, no. 23, art. no. 6351, 2020, doi: 10.3390/en13236351.
- [40] I. Mai, L. Brohmann, N. Freund, et al., “Large Particle 3D Concrete Printing - A Green and Viable Solution”, Materials, vol. 14, no. 20, art. no. 6125, 2021, doi: 10.3390/ma14206125.
- [41] S. Bhattacherjee, A.S. Basavaraj, A.V. Rahul, et al., “Sustainable materials for 3D concrete printing”, Cement and Concrete Composites, vol. 122, 2021, doi: 10.1016/j.cemconcomp.2021.104156.
- [42] N.J. van Eck and L. Waltman, “VOSviewer Manual. Manual for VOSviewer version 1.6.20”, 31 October 2023. [Online]. Available: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf. [Accessed: 21. Nov. 2023].
- [43] T. Mader, M. Schreter-Fleischhacker, O. Shkundalova, M. Neuner, G. Hofstetter, “Constitutive modeling of orthotropic nonlinear mechanical behavior of hardened 3D printed concrete”, Acta Mechanica, vol. 234, pp. 5893-5918, 2023, doi: 10.1007/s00707-023-03706-z.
- [44] L. Jendele, J. Cervenka, and M. Herzfeldt, “FEM modelling of digitally printed concrete structures using 3D extrusion”, in Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications: Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), September 2-4, 2019, Cape Town, South Africa, A. Zingoni, Ed. CRC Press, 2019, pp. 431-436, doi: 10.1201/9780429426506-77.
- [45] G. Rizzieri, L. Ferrara, and M. Cremonesi, “Numerical simulation of the extrusion and layer deposition processes in 3D concrete printing with the Particle Finite Element Method”, Computational Mechanics, vol. 73, pp. 277-295, 2024, doi: 10.1007/s00466-023-02367-y.
- [46] D. Kajzr, T. Myslivec, and J. Cernohorsky, “An Open PLC-Based Robot Control System for 3D Concrete Printing”, Robotics, vol. 12, no. 4, 2023, doi: 10.3390/robotics12040096.
- [47] M. Hoffmann, S. Skibicki, P. Pankratow, A. Zieliński, M. Pajor, and M. Techman, “Automation in the Construction of a 3D-Printed Concrete Wall with the Use of a Lintel Gripper”, Materials, vol. 13, no. 8, 2020, doi: 10.3390/ma13081800.
- [48] “Advanced Search”. [Online]. Available: https://patents.google.com/advanced. [Accessed: 21. Nov. 2023].
- [49] “European Patent Register >Country codes”. [Online]. Available: https://register.epo.org/help?lng=en&topic=countrycodes. [Accessed: 21. Nov. 2023].
- [50] “Visegrad Fund ->News”. [Online]. Available: https://www.visegradfund.org/news/visegrad-focus-researchdevelopment-innovation-digitalization/reg/. [Accessed: 13. Dec. 2023]
- [51] “Interreg 2021-2027: Fostering Cooperation for a Stronger Europe”. [Online]. Available: https://interreg.eu/aboutinterreg/. [Accessed: 13. Dec. 2023].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2c7f608-5d7f-4aac-ab03-e59ce6dc28bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.