Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Remediacyjne działanie polepszaczy z popiołu z biomasy roślinnej oraz pofermentu na glebę zanieczyszczonej metalami ciężkimi
Języki publikacji
Abstrakty
Nine phyto-ashes from the biomass combustion of birch (Betula), oak (Quercus), red oak (Quercus rubra), horbeam (Carpinus), pine (Pinus sylvestris), poplar (Populus), maple (Acer), oilseed rape straw (Brassica napus) and wheat straw (Triticum aestivum) were blended with a biogas digestate at 1:1 mass ratio to give nine organic-mineral soil improvers. The concept of the research was to outline an eco-friendly and low cost soil improver for remediating degraded lands. These (i.e. phyto-ashes, improvers and the biogas digestate) were applied (0, 5, 10, 20, 40 t∙ha-1) to a soil metallurgically contaminated with Cu, Zn, Pb and Cd. Of several tested parameters, pH changes revealed that organic-mineral soil improvers may efficiently replace (linear R2>0.90****, P<0.001) phyto-ashes in soil remedial goals. Buffering properties expressed by the cation exchange capacity (CEC) improved progressively: 29, 52, 71, 100% (phyto-ash treatments) and: 18, 37, 44, 73% (improvers treatments) for the rates 5, 10, 20, 40 t∙ha-1, respectively as referred to the control CEC. The Dynamic Remediation Efficiency (DRE) indices for Cu, Zn, Pb, Cd revealed metal-specific geochemical reactions initiated by phyto-ashes, improvers and biogas digestate. The rates 5.0–10.0 t∙ha-1 for phyto-ashes and about 20 t∙ha-1 for improvers [1:1, i.e. Phyto-ash:Biogas digestate] are recommended. For biogas digestate, the rates 10–20 t∙ha-1 were found more efficient.
W pracy zastosowano 9 popiołów z biomasy roślinnej: brzozy (Betula), dębu (Quercus), dębu czerwonego (Quercus rubra), grabu (Carpinus), sosny (Pinus sylvestris), topoli (Populus), klonu (Acer), słomy rzepaku (Brassica napus) oraz słomy pszennej (Triticum aestivum), które wymieszano z pofermentem w stosunku 1:1. Otrzymano 9 organiczno-mineralnych polepszaczy glebowych. Koncepcja badań polegała na wyodrębnieniu taniego i środowiskowo przyjaznego polepszacza do remediacji gruntów zdegradowanych. Zanieczyszczone Cu, Zn, Pb and Cd próbki gleb pobrano w strefie zlokalizowanej po południowo-wschodnej stronie Huty Zn i Pb w Miasteczku Śląskim. Popioły z biomasy roślinnej, polepszacze oraz poferment zastosowano w dawkach 0, 5, 10, 20, 40 t∙ha-1. Skuteczność procesu remediacyjnego oceniono przy użyciu testów: 0,11 mola CH3COOH dm--3, pH 3,0 (Reaktywne formy Cu, Zn, Pb, Cd) oraz 0,10 mola NaNO3 dm--3 (formy biodostępne). Spośród wielu zbadanych parametrów, zmiany pH ujawniły, że polepszacze mineralno-organiczne mogą skutecznie zastępować (liniowe R2>0,90****; P<0,001) popioły z biomasy roślinnej w zabiegach remediacyjnych. Właściwości buforowe wyrażone pojemnością wymienną w stosunku do kationów (CEC) poprawiły się progresywnie: 29, 52, 71, 100% (na obiektach z popiołami) oraz: 18, 37, 44, 73% (na obiektach z polepszaczami) odpowiednio dla dawek 5, 10, 20, 40 t∙ha-1, w porównaniu do CEC na kontroli. Wskaźniki dynamicznej skuteczności remediacyjnej (DRE) dla Cu, Zn, Pb i Cd wskazały na specyficzne reakcje geochemiczne zainicjowane popiołami, polepszaczami oraz pofermentem. Dawki 5,0–10,0 t∙ha-1 dla popiołów roślinnych, ok. 20 t∙ha-1 dla polepszaczy [1:1, tzn. popiół:poferment] oraz 10–20 t∙ha-1 pofermentu są zalecane.
Czasopismo
Rocznik
Tom
Strony
73--83
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
autor
- Poznan University of Life Sciences, Poland
autor
- Poznan University of Life Sciences, Poland
autor
- Poznan University of Life Sciences, Poland
autor
- Poznan University of Life Sciences, Poland
autor
- Poznan University of Life Sciences, Poland
Bibliografia
- 1. Basta, N.T. & McGowen, S.L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil, Environmental Pollution, 127, pp. 3-82.
- 2. Bolan, N.S., Adriano, D.C. & De-La-Luz, M. (2004). Dynamics and environmental significance of dissolved organic matter in soil. SuperSoil 2004. 3rd Australian New Zealand Soils Conference, 5-9 December, 2004, (www.regional.org.au/au/asssi/ (01.10.2018)).
- 3. Bradshaw, A. (2000). The use of natural processes in reclamation - Advantages and Difficulties, Landscape and Urban Planning, 51, 2-4, pp. 89-100.
- 4. Campbell, A.G. (1990). Recycling and disposing of wood ash, Tappi Journal, 73, 9 , pp. 141-146.
- 5. de Jong, E. (1999). Comparison of three methods of measuring surface area of soils, Canadian Journal of Soil Science, 79, pp. 345-351.
- 6. Carter, M.R. (2002). Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil function, Agronomy Journal, 94, pp. 38-47.
- 7. Carter, D.L., Mortland, M.M. & Kemper, W.D. (1986). Specific surface, in: Methods of Soils Analysis, Part I - Physical and Mineralogical Methods, Klute, A. (Ed.). 2nd ed. American Society of Agronomy. Madison, WI, pp. 413-423.
- 8. Ciesielczuk, T., Kusza, G. & Nemś, A. (2011). Fertilization with biomass ashes as a source of trace elements for soils, Environmental Protection and Natural Resources, 49, pp. 219-227. (in Polish)
- 9. Ciesielczuk, T., Rosik-Dulewska, C. & Kochanowska, K. (2014). The influence of biomass ash on the migration of heavy metals in the flooded soil profile-model experiment, Archives of Environmental Protection, 40, 4, pp. 3-15.
- 10. Circular Economy Package (2018), (http://ec.europa.eu/environment/circular-economy (01.10.2018)).
- 11. Commission of the European Communities (1991). Council Directive 91/676/EEC of 12th December 1991 concerning the protection of waters against pollution caused by nitrates of agricultural origin, Official Journal of the European Communities L375.
- 12. Davranche, M., Beaufreton, S. & Bollinger, J.C. (2003). Influence of carbonates on the surface charge of a natural solid, Journal of Colloid Interface Science, 249, pp. 113-118.
- 13. Diatta, J. & Chudzińska, E. (2009). Chemical remediation of zinc contaminated soils by applying a cement-brown coal-based component (CEMBRO), Environmental Protection and Natural Resources, 41, pp. 89-101.
- 14. Diatta, J. & Kowalski, M. (2017). Ashes from combustion of plant biomass (phyto-ashes) - recycling and agro-chemical potential. 24th International Conference, Ashes Power Plants, pp. 81-95. (in Polish)
- 15. Düring, R.A., Hoss, T. & Gäth, S. (2003). Sorption and bioavailability of heavy metals in long term differently tilled soils amended with organic wastes, Science of the Total Environment, 313, pp. 227-234.
- 16. Fijałkowska, D. & Styszko, L. (2011). Heat from combustion and calorific value of willow biomass of different years of branch regrowth, Zeszyty Problemowe Postępów Nauk Rolniczych, 564, pp. 65-72. (in Polish)
- 17. Garg, R.N., Pathak, H., Das, D.K. & Tomar, R.K. (2005). Use of fly ash and biogas slurry for improving wheat yield and physical properties of soil, Environmental Monitoring and Assessment, 107, 1-3, pp. 1-9.
- 18. Gupta, S.K. & Hani, H. (1989). Methodology for the determination of biologically relevant heavy metal concentrations in soil and testing the effects on test plants and microorganisms in polluted areas. FAC Liebefeld-Bern, (Switzerland), pp. 5-6. (in German)
- 19. Gupta, S.K., Vollmer, M.K. & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil of three-level risk assessment and risk management, Science of the Total Environment, 178, pp. 11-20.
- 20. Hazelton, P. & Murphy, B. (2007). Interpreting soil test results. What do all the numbers mean? CSIRO Publishing, Australia, p. 169.
- 21. Hébert, M. & Breton, B. (2008). Agricultural recycling of wood ash in Quebec - state, impacts and good agro-environmental practices, Agrosolutions, 19, pp. 18-33. (in French)
- 22. ISO 11466 International Standard (1995). Soil quality-Extraction of trace elements soluble in aqua regia. Geneva.
- 23. Kowalczyk-Juśko, A. (2009). Ash from different energy crops, Proceedings of ECOpole, 3, 1, pp. 159-164.
- 24. Kumpiene, J. (2003). Role of organic matter in the immobilization of metals. Licentiate Thesis. Lulea University of Technology, Sweden, p. 31.
- 25. Madejón, E., Pėrez de Mora, A., Felipe, E., Burgos, P. & Cabrera, F. (2006). Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of nature vegetation, Environmental Pollution, 139, pp. 40-52.
- 26. Maltas, A. & Sinaj, S. (2014). Wood ash: a new fertilizer for Swiss agriculture, Recherche Agronomique Suisse, 5, 6, pp. 232-239. (in French)
- 27. Mulligana, C.N. & Yong, R.N. (2004). Natural attenuation of contaminated soils, Environment International, 30, 4, pp. 587-601, DOI: 10.1016/j.envint.2003.11.001.
- 28. Ordinance of the Polish Minister of Environment (December 20th, 2005) about the standards of emissions from installations (Dz.U. No 260 poisition 2181). (in Polish)
- 29. Ordinance of July 10, 2007 for Fertilizers and Fertilization (Dz.U. No 147, position 1033). (in Polish)
- 30. Ordinance of the Polish Minister of Environment (January 20th, 2015) about the R10 recycling process (Dz.U. 2015, position 132). (in Polish)
- 31. Pitman, R.M. (2006). Wood ash use in forestry - a review of the environmental impacts, Forestry, 79-5, pp. 563-588.
- 32. Polish Standard (1994). Polish Standardisation Committee ref. PrPN-ISO 10390 (E): Soil quality and pH determination. First Edition. (in Polish)
- 33. Sandars, D.L., Audsley, E., Canete, C., Cumby, T.R., Scotford, I.M. & Williams, A.G. (2003). Environmental benefits of livestock manure management practices and technology by Life Cycle Assessment, Biosystems Engineering, 84, pp. 267-281.
- 34. Sanderson, R. (1989). Electronegativity and bond energy, Journal of American Chemical Society, 105, 8, pp. 2259-2261.
- 35. Schulten, H.R. & Leinweber, P. (2000). New insights into organic mineral particles: composition, properties and models of molecular structure, Biology and Fertility of Soils, 30, pp. 399-432.
- 36. Sequi, P. & de Nobili, M. (2000). Organic carbon. In: Methods of chemical analysis of the soil (Coordinator P. Violante). Series of analytical methods for agriculture directed by P. Sequi. Franco Angeli, Milano, Capitolo VII, 1-5. (in Italian)
- 37. Stankowski, S. & Maciorowski, R. (2011). Ashes from biomass as a potential source of nutrient elements for plants. In: Seminar “Management of Coal Combustion Products”. Proceedings, pp. 160-180, Warsaw. (in Polish)
- 38. Stolarski, M.J., Szczukowski, S., Tworkowski, J. & Krzyżaniak, M. (2013). Cost of heat energy generation from willow biomass, Renewable Energy, 59, pp. 100-104.
- 39. Sutherland, R.A. & Tack, F.M.G. (2002). Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure, Analytica Chimica ACTA, 454, pp. 249-257.
- 40. Vance, E.D. (1996). Land application of wood-fi red and combination ashes: an overview, Journal of Environmental Quality, 25, pp. 937-944.
- 41. Vassilev, S., Baxter, D., Andersen, L. & Vassileva, C. (2013). An overview of the composition and application of biomass ash. Part 2. Potential utilization, technological and ecological advantages and challenges, Fuel, 105, pp. 19-39.
- 42. Voca, N., Kricka, T., Cosic, T., Rupic, V., Jukic, Z. & Kalambura, S. (2005). Digested residue as a fertilizer after the mesophilic process of anaerobic digestion, Plant, Soil, and Environment, 51, pp. 262-266.
- 43. Wang, X., Wang, J. & Zhang, J. (2012). Comparisons of three methods for organic and inorganic carbon in calcareous soils of Northwestern China, PLoS ONE, 7, 8, e44334.
- 44. Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2015). The pyrolysis and gasification of digestate from agricultural biogas plant, Archives of Environmental Protection, 41, pp. 70-75.
- 45. Xiao, R., Chen, X., Wang, F. & Yu, G. (2011). The physicochemical properties of different biomass ashes at different ashing temperature, Renewable Energy, 36, pp. 244-249.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2beea6e-5268-4eaf-85eb-7774fad9cc11