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1. Introduction

We recall basic definitions (cf. [10]) concerning Markov chains. Let M be an n× n
transition matrix of a Markov chain. Positions of the matrix M will be denoted by
M[i, j], i, j ∈ {1,2, ...,n}. M[i, j] will be called [i, j] position of the matrix M. The
chain is called ergodic if and only if for all i, j ∈ {1,2, ...,n} there exists a positive
natural number p such that the [i, j] position of p–th power of the matrix Mp is pos-
itive. Since the position m(p)

i j of the p–th power Mk of M gives the probability that
the Markov chain, started in state i, will be in state j after p steps, we can say that
a Markov chain is called an ergodic chain if and only if it is possible to go from ev-
ery state to every other state (i.e., all transitions are ultimately possible). The chain
is called regular if and only if there exists a positive natural number p, such that all
position of the p–th power Mp of the matrix M are positive. Obviously, regular chains
are ergodic.

It is well known that the Warshall-Floyd algorithm (cf. [1], [2]) can be used to
solve whether a Markov chain is ergodic. Its complexity is Θ(n3).
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The question of the existence of a polynomial algorithm for the problem whether
an ergodic chain is regular remains open (according to the actual knowledge of the
authors).

Moreover, we have not find any informal information about the complexity of
a mathematical method (e.g., cf. [7]) related to deciding the regularity of Markov
chains.

Some interesting and useful conditions characterizing regularity one can find in
[5], [6], [7], [9], [10], [11], [12], [13].

The paper presents a Θ(n3 · logn) algorithm solving the regularity of Markov
chains. The data for the algorithm is an n× n matrix of a Markov chain. The algo-
rithm consists of two modules. The first module realizes the Warshall-Floyd algo-
rithm and decides whether M is a matrix of an ergodic Markov chain. Its (worst-case)
complexity is Θ(n3).

The second module verifies regularity of the Markov chain. The idea is to calcu-
late powers of a Boolean matrix G – the adjacency matrix of the graph of the Markov
chain (for details cf. Section 2). The main problem is to find, for a given n, an upper
estimate U(n), such that if there exists m satisfying Gm =E, then there exist k≤U(n)
such that Gk = E, where E denotes the n×n Boolean matrix with all positions equal
to 1. Another question is to minimize the number of matrix multiplication related to
verification the condition Gm = E.

In the case, where we shall use an efficient algorithm for matrix multiplication,
e.g., four Russian algorithm (cf. [1], [2]) or Strassen algorithm (cf. [1], [2]) we finally
obtain the worst-case complexity of the second module at most Θ(n3).

The position [10] can be treated as a report on programistic experiments illus-
trating realizations of the algorithm solving regularity of Markov chains.

2. Markov Chains

In this section we recall basic definition and facts related to Markov chains (cf. [5],
[6], [7], [10]). We shall use the term "computation" to describe the process of chang-
ing states.

A Markov chain is determined by a finite set of states S. Without loss of general-
ity we shall assume that S is a subset of natural numbers of the form S = {1,2, ...,n}.
A computation of a Markov chain will be understand as a finite or infinite sequence
of states {sm}m∈L, where L is the set of natural numbers N or an initial subset of
natural numbers of the form Nk = {0,1,2, ...,k}. We shall say that computation starts
at time 0 and moves successively from one state to another at unit time intervals. s0
will be called the initial state. For a given state si, the next state si+1 is chosen in
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a random way. The probabilities of passing from a state i to another next state j of
a computation, denoted by mi j or M[i, j], for i, j ∈ S, are fixed and form a square,
n×n transition matrix M of the Markov chain. The matrix M satisfies the following
conditions:

M[i, j]≥ 0, for all i, j ∈ {1,2, ...,n}, (1)

n

∑
j=1

M[i, j] = 1, for all i ∈ {1,2, ...,n}. (2)

Each matrix M, with positions being real numbers, satisfying the conditions (1), (2),
will be called probabilistic matrix.

2.1 Theorem (cf., e.g., [7], [10])

The product of probabilistic matrices is a probabilistic matrix.
ut

Let c =< s0,s1,s2, ...,sp > be a computation of the Markov chain. The number
p will be called the number of steps (transitions) of the computation c or the length
of the computation c and denoted by |c|. By the probability of realization of the
computation c we shall mean the number

pr(c) =
p

∏
i=1

M[si−1,si] (3)

It is easy to note that pr(c)> 0 if and only if M[si−1,si]> 0, for i = 1, ..., p.
Let Cp(i, j) denote the set of all computations of the length p that starts in the

state i and ending, after p steps, in the state j. The following theorem gives a method
of determining the sum of probabilities of computations of Cp(i, j):

2.2 Theorem (cf., e.g., [10])

Let M be transition matrix of a Markov chain. The position m(p)
i j of the p–th power

Mp of M gives the probability that the Markov chain, started in state si will be in
state s j after a computation containing p steps.

ut

We shall now formulate the above theorem in a more technical manner. Let
i, j ∈ S be fixed states.
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2.3 Proposition (compare [5], [6], [7], [10])

Mp[i, j] = ∑
c∈Cp(i, j)

pr(c) (4)

ut

2.4 Corollary (compare [5], [6], [7], [10])

Mp[i, j] > 0 if and only if there exists a computation c of the length p that starts in
the state i and ending, after p steps, in the state j and such that pr(c)> 0.

ut
Now, we shall formulate the question of regularity of a Markov chain, repre-

sented by a transition n×n matrix M, by means of a Boolean, we shall formulate the
question of regularity of a Markov chain, represented by a transition n× n matrix
GM, being the adjacency matrix of the transition graph GM of the chain.

Let M be transition matrix of a Markov chain. We shall define the transition
graph GM =<V,E > of the Markov chain. The set VM of vertices of GM is the set S
of states, V = S, and the set EM ∈ S×S of edges is defined in the following way:

< i, j >∈ EM if and only if M[i, j]> 0,

for i, j ∈ {1,2, ...,n}.

We recall that the adjacency matrix of the graph GM is the Boolean matrix GM

or defined as follows:

GM[i, j] =
{

1 if < i, j >∈ EM,
0 if < i, j >/∈ EM.

The Boolean matrix GM will be denoted by G, if it does not lead to any misunder-
standing.

In the sequel we shall consider paths of graphs. We recall that by a path of a
graph we shall understand a finite sequence of vertices d =< s0,s1,s2, ...,sp >, such
that < si−1,si >∈ EM, for i = 1,2, ..., p. s0 and sp are called, respectively, the initial
and the final vertex of the path d. The number p will be called the length of the path
d and denoted by |d|.
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2.5 Proposition (compare [[5], [6], [7], [10])

Let M be transition matrix of a Markov chain and let GM be the transition graph of
the chain. Let c =< s0,s1,s2,s3, ...,sk−1,sk > be a sequence of states of the chain.
The following conditions are equivalent:

– the sequence c is a computation of the chain such that pr(c) is positive,
– the sequence c is a path of the graph GM.

ut
In the sequel the symbol ⊗ will be used to denote logical multiplication of

Boolean matrices; if A is a p× q Boolean matrix, B is a q× r Boolean matrix, then
C = A⊗B is a p× r Boolean matrix satisfying

C[i, j] = (A[i,1]∧B[1, j])∨ (A[i,2]∧B[2, j])∨ ...∨ (A[i,q]∧B[q, j]),

for i = 1,2, ..., p, j = 1,2, ...,r, where ∧, ∨ denote conjunction and disjunction op-
erations. The matrix G⊗ ...⊗G︸ ︷︷ ︸

p times

will be called the p-th power of the matrix G and

denoted by Gp.
Similarly, for A and B being p×q Boolean matrices, we define A⊗B as a p×q

Boolean matrix C satisfying C[i, j] = (A[i, j]∨B[i, j]), for i = 1,2, ..., p, j = 1,2, ...,q.

The following fact is analogous to (4) and belongs to the folklore of the graph
theory:

2.6 Proposition (cf. [1], [2])

GM)p[i, j] = 1 if and only if there exists a path in the graph GM of the length p, with
the initial vertex i and the final vertex j.

ut
Propositions 2.4, 2.6 can be written together in a more readable form and can be

treated as an equivalent form of 2.5.

2.7 Theorem (compare [5], [6], [1], [2])

Let M be the transition n×n matrix of a Markov chain and let GM be the adjacency
matrix of the graph GM. Then for all i, j = 1,2, ...,n, the following equivalence holds:

Mp[i, j]> 0 i f and only i f (GM)p[i, j] = 1.

ut
Matrices with all positions being positive will be called a positive matrices.
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2.8 Corollary

Let M be the transition n×n matrix of a Markov chain and let GM be the adjacency
matrix of the graph GM. Then for all i, j = 1,2, ...,n, the following equivalence holds:

Mp is a positive matrix i f and only i f (GM)p = E.

ut
This fact indicates that the problem, whether a Markov chain is ergodic or reg-

ular, that concern the powers of the transition matrix M, can be transformed into
questions concerning the powers of the Boolean matrix G = GM:

(e) a Markov chain is ergodic if and only if the following condition is satisfied:
(∀i ∈ S)(∀ j ∈ S)(∃p ∈ N)((Gm)

p[i, j] = 1)
i.e., for all i, j ∈ {1,2, ...,n} there exists a positive natural number k such that the
[i, j] position of the matrix (GM)p is equal to 1.

(r) a Markov chain is regular if and only if the following condition is satisfied:
(∃p ∈ N)(∀i ∈ S)(∀ j ∈ S)((Gm)

p[i, j] = 1)
i.e., for all i, j ∈ {1,2, ...,n} there exists a positive natural number k such that all
the position of the matrix (GM)p are equal to 1.

Therefore, the question of regularity of a Markov chain, represented by a
Boolean n×n matrix GM can be formulated as a question, whether the sequence

GM,(GM)2,(GM)3, ...,(GM)i,(GM)i+1, ...

contains the matrix with all positions equal to 1. Let us note that the number of dif-
ferent n×n Boolean matrices is finite; there is 2(n·n) different Boolean n×n matrices.
This means that the above sequence is periodic (cyclic), and enables us to formulate
a "brute force" algorithm solving the regularity of Markov chains:

2.9 Algorithm 1

a) the data:
G = GM, a Boolean n× n matrix GM representing transition graph of a Markov
chain,

b) the result:
the answer, whether it is a matrix of a regular Markov chain,

c) the idea of the algorithm:
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begin {Algorithm 1}
{first module - begin}
{this is a modification of Warshall Floyd algorithm}
{----------------------------------------}

for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
tr_cl_G[i][j] := G[i][j];

for (k=1;k<=n;k++)
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
if ((tr_cl_G[i][k] = 1)&(tr_cl_G[k][j] = 1))
then tr_cl_G[i][j] := 1;

test_erg = 1;
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)

if (tr_cl_G[i][j] = 0) test_erg := 0;
{----------------------------------------}
{first module - end}

{----------------------------------------}
{second module - begin}

if (test_erg = 0) then test_reg = 0
else
begin
H := G;
p := 1;
u:= exp(2,n*n);
if (H = E) then test_reg := 1
else test_reg := 0;
while ((test_reg = 0) & (p<=u)) do

begin
H := H ⊗ G;
if (H = E) then test_reg := 1;
p = p + 1;

end;
end;

11
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{----------------------------------------}
{second module - end}
end.

d) the worst–case complexity: O(2(n·n)) matrix multiplications,
e) the upper estimate for analyzed powers of the matrix G:

U(n) = 2(n·n),
f) the idea of the correctness of the algorithm:

the correctness of the algorithm is a simple corollary related to remarks made
after points (e), (r) above.

Because of its complexity, Algorithm 1 is of any use in practice. As we have
mentioned above, the main problem for speed up this algorithm, is to find, for a
given n, an upper estimate U(n), such that if there exists q satisfying (GM)q = E,
then there exist p≤U(n) such that (GM)p = E. However, another question related to
quality of the algorithm, is to minimize the number of matrix multiplication related
to verification whether (GM)p = E.

To construct effective algorithms solving regularity of Markov chains we need
some facts related to Boolean matrix multiplication (Section 3) and the length of cy-
cles, containing all vertices, for transition graphs of ergodic Markov chains (Section
4).

3. Remarks on Boolean matrix multiplication

We shall start with several simple facts, concerning Boolean matrix multiplication.
In the authors opinion, these simple facts are rather well known and are elements of
the practice of matrix multiplication.

A notation will be used: assume natural ordering between logical values: 0 < 1.
We define an ordering in sets of Boolean matrices of the same dimension: for two
Boolean p×q matrices A, B we shall write

A≤B if and only if (A[i, j]<B[i, j]orA[i, j] =B[i, j], f ori= 1,2, ..., p, j = 1,2, ...,q).

By In we shall denote the n×n Boolean matrix defined as follows:

In[i, j] =
{

1 if i 6= 1
0 if i = 1

, for i, j = 1,2, ...,n.

By En we shall denote the n×n Boolean matrix defined as follows:

En[i, j] = 1, for i, j = 1,2, ...,n.
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We shall often write I and E instead of In and En if it does not lead to any misunder-
standing.

We shall start with a simple remark:

3.1 Remark

Let H, K ≥ I be n×n Boolean matrices. Then H⊗K ≥ H.
ut

3.2 Corollary

Let K ≥ I be an n×n Boolean matrix.
Then

K ≤ K2 ≤ K3 ≤ K4 ≤ ...

is a non-decreasing sequence of matrices.
ut

We end this section with the following two (equivalent) lemmas:

3.3 Lemma

Let M be transition matrix of a Markov chain with n states and let G = GM be the
n× n Boolean matrix of the transition graph of the chain. If for some natural m,
Gm = E, then

E = Gm = Gm+1 = Gm+2 = Gm+3 = ....

ut

3.4 Lemma

Let M be transition matrix of a Markov chain with n states. If for some natural m,
Mm is a positive matrix, then

Mm+1,Mm+2,Mm+3, ...,

are also positive matrices.
ut
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4. Cycles in graphs of ergodic chains

In this section we shall consider transition graphs of ergodic Markov chains. It
is easy to argue that in the case of graphs of ergodic chains there exists cycles
containing all vertices. Our aim is to estimate the length of such cycles.

The main fact concerning this problem is the following

4.1 Lemma

Let GM be the transition graph of an ergodic Markov chain with n states. Then there
exists a cycle containing all vertices with the length at most (n2−n) = O(n2).

The idea of the proof.
We start with a simple remark: if GM is the graph of an ergodic chain GM then

there exists a cycle in GM containing all vertices.
Consider such a cycle d =< s0,s1,s2,s3, ...,sk−1,sk >, where si ∈ S =

{1,2, ...,n}, for i = 1,2, ...,k, containing all vertices. Denote by m the number of
occurrences of the vertex s0 in the cycle d. Without loss of generality we can assume,
for readability, that s0 = 1. Therefore d can be presented as

< 1,s1
1,s

1
2, ...,s

1
r1
,1,s2

1,s
2
2, ...,s

2
r2
, ...,1,sm

1 ,s
m
2 , ...,s

m
rm
>

where r1 + r2 + ...+ rm +m = k. Let us assign to each s ∈ S {1} = {2,3, ...,n}, the
number i(s) ∈ {1,2, ...,m}, such that s occurs among {si(s)

1 ,si(s)
2 , ...,si(s)

ri(s)}.
Suppose m > n˘1. This means that if we remove from the sequence d all sub-

sequences of the form < 1,s j
1,s

j
2, ...,s

j
r j >, where j ∈ {1,2, ...,m} {i(2), i(3), ..., i(n)}

then the sequence obtained in this way also forms a cycle of GM and contains all
elements of the set S. Moreover, the number of occurrences of the element s0 = 1 in
the obtained sequence does not exceed n−1.

In an analogous manner we can repeat this removing for all remaining elements
s = 2,3, ...,n and argue that each element of S does not occur in the result sequence
more than n−1 times.

ut
We now formulate a simple remark:

4.2 Remark

If p is the length of a cycle of G containing all vertices of the Markov chain, then
Gp ≥ I.

ut
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From Lemma 4.1 we obtain:

4.3 Corollary

Let G = GM be the n×n Boolean matrix of the transition graph of an ergodic chain.
Then, for some p≤ n2−n, Gp ≥ I.

ut
The following example shows that there exist transition graphs of Markov chains

with n states, such that minimal length of a cycle containing all states, is Θ(n2).

4.4 Example

Let
V = S = {1,2,3, ...,3k−1,3k,3k+1}, n = 3k+1,

and

E ⊂V ×V = {< 1,3 >,< 1,6 >,< 1,9 >,...,< 1,3(k−1)>,< 1,3k >}∪
{< 3,6 >,< 3,9 >,...,< 3,3(k−1)>,< 1,3k >}∪

{< 6,9 >,...,< 3,3(k−1)>,< 1,3k >}∪
...

{< 3(k−2),3(k−1)>,< 3(k−2),3k >}∪
{< 3(k−1),3k >}∪

{< 3,2 >,< 3,4 >,< 6,5 >,< 6,7 >,...,< 3k,3k−1 >,< 3k,3k+1 >}∪
{< 2,1 >,< 5,1 >,...,< 3(k−1)−1,1 >,< 3k−1,1 >}∪
{< 4,1 >,< 7,1 >,...,< 3(k−1)+1,1 >,< 3k+1,1 >}.

It is easy to note that the sequence below is an example of a cycle of the graph
<V,E >, containing all vertices, of minimal length equal to k · (k+5) = (1/9) · (n−
1) · (n+5) = Θ(n2):

1,3,2, 1,3,4, 1,3,6,5, 1,3,6,7, 1,3,6,9,8, 1,3,6,9,10, ...,
1,3,6,9, ...,3k,3k−1, 1,3,6,9, ...,3k,3k+1.

ut

5. Polynomial algorithms solving regularity of Markov chains

As we have mentioned above, the initial data for such an algorithm is an n×n Boolean
matrix GM representing transition graph of a Markov chain. The considerations of
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Section 2 enables us to formulate the "brute force" algorithm consisting in analyzing
powers of the matrix GM:

GM,(GM)2,(GM)3, ...,(GM)i,(GM)i+1, ...,(GM)n·n.

Since the sequence of powers of the matrix GM is periodic (the number of different
n×n Boolean matrices is 2(n·n), we have determined an upper estimate u(n) = 2(n·n),
such that if there exists q satisfying (GM)q = E, then there exist p ≤ u(n) such that
(GM)p = E.

We shall now use the fact (Corollary 3.3):

if Gm = E, then E = Gm+1 = Gm+2 = Gm+3 = ...

to minimize the number of matrix multiplication related to verification whether
(GM)p = E, for some p≤ 2(n·n).

5.1 Algorithm 2

a) the data:
G = GM, a Boolean n× n matrix GM representing transition graph of a Markov
chain,

b) the result:
the answer, whether it is a matrix of a regular Markov chain,

c) the idea of the algorithm:
begin {Algorithm 2}
{first module - begin}
{----------------------------------------}

. . .
{----------------------------------------}
{first module - end}

{second module - begin}
{----------------------------------------}

if (test_erg = 0) then test_reg = 0
else
begin
H := G;
p := 1;
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u := n*n;
if (H = E) then test_reg := 1
else
begin
test_reg := 0;
while ((test_reg = 0) & (p < u)) do

begin
p = 2*p;
H := H ⊗ H;
if (H = E) then test_reg := 1;

end;
end;

end;
{----------------------------------------}
{second module - end}
end.

d) the worst–case complexity: O(n2) matrix multiplications,
e) the upper estimate for analyzed powers of the matrix G:

U(n) = 2(n·n),
f) the idea of the correctness of the algorithm:

the correctness of the algorithm immediately follows from Lemma 3.3. and the
remark formulated below:

ut

5.2 Remark (refers to d))

To decide regularity of an ergodic Markov chain suffices n2 matrix multiplications.

The idea of the proof.
To argue the fact, that for deciding regularity of an ergodic Markov chain suffices

O(n2) matrix multiplications, let us note that the sequence of values of the matrix
variable H, produced by the algorithm, is the following sequence of powers of the
matrix G:

G1,G2,G4,G8,G16,G32, ...

This sequence can be also presented as

G20
,G21

,G22
,G23

,G24
,G25

, ...,G2(n·n) , ...,G2m
.

17
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and the values of exponents are subsequent values of the variable p. Moreover, the
whole number m of repetitions of the loop "while" of the second module of Algorithm
2 is the least number satisfying 2m ≥ 2(n·n). According to Lemma 3.3 if the sequence

G1,G2,G3,G4,G5, ...,G2(n·n) ,

contains the matrix E, Gk = E, then E = Gk+1 = Gk+2 = Gk+3 = ... = G2(n·n) , and
therefore, the sequence

G20
,G21

,G22
,G23

,G24
,G25

, ...,G2m

where q is the least number satisfying 2m ≥ 2(n·n), also contains the matrix E. Thus
m = O(n2).

ut

5.3 Corollary

If we use the ordinary procedure of Boolean matrix multiplication then the
worst–case complexity of Algorithm 2 is Θ(n5).

ut

5.4 Corollary (cf. also Corollary 5.12)

If we use the method of four Russian or the Strassen method for matrix multiplication
then the worst–case complexity of Algorithm 2 is of the order less than O(n5).

ut
We shall now use the facts presented in Section 3 (Boolean matrix multiplica-

tion) and Section 4 (cycles in transition graphs of ergodic chains) to improve Algo-
rithm 1 in another manner.

5.5 Algorithm 3

a) the data:
G = GM, a Boolean n× n matrix GM representing transition graph of a Markov
chain,

b) the result:
the answer, whether it is a matrix of a regular Markov chain,

c) the idea of the algorithm:
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begin {Algorithm 3}
{first module - begin}
{----------------------------------------}

. . .
{----------------------------------------}
{first module - end}

{second module - begin}
{----------------------------------------}

if (test_erg = 0) then test_reg = 0
else
begin
H := G;
p := 1;
u := n*(n-1);
if (H >= I) then test_I := 1
else test_I := 0;
{first loop - begin}
while (test_I = 0) do
begin
H := H ⊗ G;
if (H >= I) then test_I := 1;
p = p + 1;

end;
{first loop - end}
{first loop is repeated at most (n^2 - n) times,
because the chain is ergodic}

{this loop ends with test_I = 1 and H >= I}
K := H;
p := 1;
u := n*n - n;
if (H = E) then test_reg := 1
else test_reg := 0;
{second loop - begin}
while ((test_reg = 0) & (p < u))
begin
H := H ⊗ K;
if (H = E) then test_reg := 1;

19
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p = p + 1;
end;

{second loop - end}
{second loop is repeated
??????? NO MORE ??????? than (n^2 - n) times}

{if the chain is regular then this loop
ends with test_reg = 1 and H = E}

end;
{----------------------------------------}
{second module - end}
end.

d) the worst–case complexity: O((n2− n) + (n2− n)) = O(n2) matrix multiplica-
tions,

e) the upper estimate for analyzed powers of the matrix G:
U(n) = (n2−n) · (n2−n) = n2 · (n−1)2,

f) the idea of the correctness of the algorithm:
the correctness of the algorithm immediately follows from Lemma 4.1 and Corol-
lary 4.3.

5.6 Remark (refers to f) and e))

To decide regularity of an ergodic Markov chain suffices to consider the powers Gq

of the matrix G, representing transition graph of the chain, for q≤ n2 · (n−1)2 .

The idea of the proof.
Let us note that the second module is realized, provided that the chain is ergodic.

In this case (cf. Corollary 4.3) the first loop ends its computation with the value of
variable test_I being 1 and the value of the variable H being a matrix K, K ≥ I.
The second loop starts with the initial value of the variable K being the value of the
variable H at the end of first loop. Then the value of the variable K (at the start of the
second loop) is the power Gp of the matrix G, where p≤ n · (n−1) (cf. Corollar 4.3)
and Gp > I. This means that the number of positions of this matrix that are equal to 1
is at least n. Denote by up(L), for an n×n Boolean matrix L, the number of positions
equal to 1. Therefore, according to Corollary 4.3, for the subsequent values of the
variable H,

K,K2,K3,K4, ...

during the realization of the second loop, we have

up(K)≤ up(K2)≤ up(K3)≤ up(K4)≤ ...
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Since, for each position (Km) of this sequence of matrices, up(Km) ≤ n2, this se-
quence is periodic (cyclic) and the length of the period is less than (n2−n).
This means that to decide, whether this sequence contains the matrix E, it is sufficient
to analyze only (n2−n−1) first positions of the sequence.
Thus, the final value of the variable H at the end of second loop is the power Gq of
the matrix G, where q≤ (n2−n) · (n2−n).
Recapitulation: Algorithm 3 ends his computation with the value of the variable H
being E and the value of the variable test_reg being 1, if and only if, Gm = E for
some m, such that m≤ (n2−n) · (n2−n) = n2 · (n−1)2 = n4−2 ·n3 +n2.

ut
From Lemma 3.3 immediately follows

5.7 Corollary

A Markov chain with the matrix G is regular if and only if the matrix Gn2·(n−1)2
is

equal to E.
ut

Now, we shall improve Algorithm 3 using the same method that we have used
in passing from Algorithm 1 to Algorithm 2:

5.8 Algorithm 4

a) the data:
G = GM, a Boolean n× n matrix GM representing transition graph of a Markov
chain,

b) the result:
the answer, whether it is a matrix of a regular Markov chain,

c) the idea of the algorithm:
begin {Algorithm 4}
{first module - begin}
{----------------------------------------}

. . .
{----------------------------------------}
{first module - end}
{second module - begin}
{----------------------------------------}
if (test_erg = 0) then test_reg = 0
else
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begin
H := G;
p := 1;
u := n*n*(n-1)*(n-1);
if (H = E) then test_reg := 1
else test_reg := 0;
while ((test_reg = 0) & (p < u))
begin
p = 2*p;
H := H ⊗ H;
if (H = E) then test_reg := 1
else test_reg := 0;

end;
end;

{second module - end}
{----------------------------------------}
end.

d) the worst–case complexity: O(log2((n
2−n) · (n2−n))) = O(log2 n) matrix mul-

tiplications,
e) the upper estimate for analyzed powers of the matrix G:

U(n) = (n2−n) · (n2−n) = n2 · (n−1)2,
f) the idea of the correctness of the algorithm:

the correctness of Algorithm 4 is an immediate consequence of Remark 5.9 for-
mulated below:

5.9 Remark (refers to f))

To decide regularity of an ergodic Markov chain suffices to consider the powers of
the matrix G representing transition graph of the chain:

G20
,G21

,G22
,G23

,G24
,G25

, ...,G2q
, ...

for least q satisfying 2q ≥ n2 · (n−1)2, i.e., q≥ log2(n
2 · (n−1)2) = O(log2 n).

The idea of the proof.
From Remark 5.6 it follows that to solve regularity of a Markov chain it is suffi-

cient to analyze the sequence of powers of the matrix G representing transition graph
of the chain:

G1,G2,G4,G8,G16,G32, ...,Gm, ...,Gn2·(n−1)2
,
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for m ≤ n2 · (n− 1)2. From Lemma 3.3 it follows, that if this sequence contains the
matrix E, Gm = E, then E = Gm+1 = Gm+2 = Gm+3 = ...= Gn2·(n−1)2

. Therefore, the
sequence

G20
,G21

,G22
,G23

,G24
,G25

, ...,G2q
,

where q is the least number satisfying 2q ≥ U(n) = n2 · (n− 1)2, also contains the
matrix E. It is easy to note that q = O(log2 n).

ut
The theorem below summarizes all the observations:

5.10 Theorem

M is the matrix of a regular Markov chain if and only if all elements of the sequence
of powers of the matrix G,

GU(n),GU(n)+1,GU(n)+2, ...

are equal to the matrix E.
ut

In the case, where we shall use efficient algorithms for matrix multiplication,
e.g., four Russian algorithm or Strassen algorithm we finally obtain the worst-case
complexity of the second module at most Θ(n3). The worst–case complexity of
four Russian algorithm (cf. [1], [2]) is O(n3/ log2 n). The worst–case complexity of
Strassen algorithm (cf. [1], [2]) is O(nlog2 7).

5.11 Corollary

Consider the case, where the Boolean matrix multiplication ⊗ is realized in Algo-
rithm 4 by means of four Russian algorithm (cf. [1], [2]). Then the worst–case com-
plexity of this version of Algorithm 4 is O(n3).

ut

5.12 Corollary

Consider the case, where the Boolean matrix multiplication ⊗ is realized in Algo-
rithm 4 by means of Strassen algorithm (cf. [1], [2]). Then the worst–case complexity
of this version of Algorithm 4 is less than O(n3).

ut
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6. Final remarks

It was a little surprising for the authors that the modules corresponding respectively
to investigations of ergodity and regularity of Markov chains are of comparable com-
plexity.

We would like to stress that the proof of the correctness of the algorithms pro-
posed in the paper do not make any use of facts characterizing Markov chains in
terms of eigenvalues of matrices.

6.1 Remark

Algorithms presented in the paper were implemented and tested by Krystian Moraś
in [10].

The implemented (in C++) version of Algorithm 4 one cane find at:
p.wi.pb.edu.pl/wiktor–danko .
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EFEKTYWNE ALGORYTMY ROZSTRZYGANIA
REGULARNOŚCI ŁAŃCUCHÓW MARKOWA

Streszczenie W pracy proponujemy algorytmy rozstrzygające regularność łańcuchów Mar-
kowa o macierzy przejść rozmiaru n×n. Najniższa złożoność takiego algorytmu może być
nie większa niż O(n3) i podana jest argumentacja, że nie można jej istotnie obniżyć.

Słowa kluczowe: łańcuch Markowa, ergodyczny łańcuch Markowa, regularny łańcuch
Markowa
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