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1. Introduction
Today, a clear trend in the electrification process has emerged in all areas to cope with carbon emissions. For this 
purpose, the widespread use of electric cars and wind energy conversion systems has increased the attention and 
importance of electric machines. High-performance control with increased reliability is now the primary goal for 
these machines, especially induction motors (IMs) and permanent-magnet motors (PMMs). Two mature control 
techniques, field-oriented control (FOC) and direct torque control (DTC), have been used for a long time. Although 
both methods have their merits, each method has its limitations as stated in the literature (Wang et al., 2018). 
Difficulty in designing a cascaded control loop is the main disadvantage of FOC (Wang et al., 2018). On the other 
hand, DTC has problems with torque ripples, current harmonics and variable switching frequency (Nemec et al., 
2007). Therefore, researchers are in search of more advanced control methods.

Model predictive control (MPC) is an emerging topic in the control of power converters and electrical machines. 
It provides some superiorities over mature control techniques, such as the ability to handle nonlinearities, ease 
inclusion of additional control objectives, dynamic response and straightforward implementation (Kouro et al., 2009; 
Rodriguez et al., 2013). Two of the MPC strategies, predictive torque control (PTC) and predictive current control 
(PCC), are popular in the control of electrical machines. A comparison has been made by (Wang et al., 2015), 
which concludes that the PTC has lower torque ripples. Also, several comparisons have been made between MPC 
strategies and mature control techniques in (Rodriguez et al., 2012; Wang et al., 2015). Nevertheless, PTC suffers 
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from the weighting factor determination, torque ripples, parameter dependency and variable switching frequency 
(Rodriguez et al., 2012). Despite the proposed effective solutions, it is still open to research.

The most critical of these disadvantages is the selection of weighting factors as it directly affects control 
performance. In the traditional approach, these weighting factors are selected by the trial-and-error method which 
is not an efficient way. Several methods have been proposed to overcome this difficulty and they can be divided into 
two main groups. The first group of studies (Arshad et al., 2019; Guazzelli et al., 2019; Davari et al., 2021) focuses 
on the selection methods, while the second group (Rojas et al., 2013, 2017; Zhang and Yang, 2015; Muddineni  
et al., 2017; Davari et al., 2020; Stando and Kazmierkowski, 2020; Wang et al., 2020; Muddineni et al., 2021) 
aims to eliminate these factors. Considering the first group of studies, one approach is to optimise these weighting 
factors with meta-heuristic optimisation algorithms, which has been addressed in a very limited number of papers 
(Arshad et al., 2019; Guazzelli et al., 2019; Davari et al., 2021). Guazzelli et al. (2019) optimise the weighting 
factors by a multi-objective genetic algorithm and extensively discuss the results. Although they evaluate three 
solutions among the Pareto front solutions, a methodology for choosing a final solution is not addressed. To deal 
with this problem, Arshad et al. (2019) use the Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) decision-making method for choosing a final solution. In all the mentioned studies, the given problem is 
considered as a multi-objective optimisation problem and no decision-making method other than TOPSIS has been 
applied to select a final solution. In addition to these offline selection methods, Davari et al. (2021) use a simplified 
simulated annealing (SA) algorithm online to tune the weighting factor. In the cost function of SA, a single objective 
cost function is constructed by scalarising torque and flux error terms, which is called the scalarisation method by 
Zerdali and Barut (2017). The main disadvantage of this method is the requirement of scalarisation coefficients 
for both torque and flux error terms. Moreover, it is known that metaheuristic algorithms have an extremely high 
computational load for real-time implementations. Their micro versions developed for real-time optimisation suffers 
from low-convergence rates. Gürel and Zerdali (2021) optimise the weighting factor only through speed errors in 
order to avoid the problems of choosing weighting factors in the scalarisation method and choosing a final solution 
from the Pareto set in multi-objective optimisation.

In this paper, multi-objective optimisation of the PTC strategy for IM control is performed by the NSGA-II 
algorithm through flux and speed errors. Unlike the current literature, three decision-making methods are applied to 
the Pareto front solutions, and the weighting factors selected by each method are tested under different operating 
conditions in terms of torque ripples, flux ripples, current harmonics and average switching frequencies. Thus, the 
difficulty in choosing a single solution among the Pareto front solutions can be eliminated.

The rest of this paper is organised as follows. Section 2 introduces the PTC strategy for an IM fed by a two-level 
voltage source inverter (2L-VSI). Section 3 optimises the PTC strategy with a multi-objective optimisation algorithm 
and selects one solution by applying different decision-making methods to the Pareto front solutions. Section 4 
presents comparison results for the selected weighting factors and gives the statistics for each weighting factor. 
Finally, Section 5 gives the conclusion.

2. PTC Strategy for IM
Before presenting the PTC strategy, it is always correct to give the mathematical model of IM. For this purpose, first 
the mathematical model of IM fed with a 2L-VSI is given and then the PTC strategy is presented in detail.

2.1. Mathematic model of IM fed by a 2L-VSI
Mathematical model of the IM can be given the following equation set:

= + s
s s s

dR
dt

v i ψ  (1)

0 = + −r
r r r r

dR j
dt

ωi ψ
ψ  (2)

= +s s s m rL Li iψ  (3)

= +r m s r rL Li iψ  (4)
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where = +s s sv jvα βv  is the voltage vector; = +s s si jiα βi  and = +r r ri jiα βi  are the stator and rotor current vectors, 
respectively; = +s s sjα βψ ψψ  and = +r r rjα βψ ψψ  are the stator and rotor flux vectors, respectively; sR  and sL  are the 
stator resistance and inductance, respectively; rR  and rL  are the rotor resistance and inductance, respectively; 

mL  is the mutual inductance; rω  and mω  are the rotor electrical and mechanical angular velocities, respectively; eτ  
and lτ  are the electromagnetic torque and load torque, respectively; pp  is the pole-pairs; and tJ  is the total inertia. 

When the stator terminals of the IM are connected to a 2L-VSI, the stator voltage vectors can be derived as 
follows:

( )2
dc

2
3

= + +s a b cV S aS a Sv  (7)

where dcV  is the dc-link voltage, { }, ,∈x a b cS S S S  is the switching state of the upper switches on each leg and a is the 
phase shift of 120 electrical degrees. It is possible to generate seven different voltage vectors with eight possible 
switching combinations. The circuit topology and voltage vectors can be seen in Figure 1.

2.2. PTC strategy for IM
Block diagram of the PTC strategy for the IM is presented in Figure 2. In this strategy, the optimal voltage vector for 
next time instant 1+k  is directly selected through discrete-time IM model and a predefined cost function. First, stator 
fluxes ( p

sψ ) and currents ( p
si ) are predicted for each possible voltage vector as in Figure 1b. Using these predicted 

Fig. 1. 2L-VSI (a) Inverter topology (b) Possible voltage vectors. 2L-VSI, two-level voltage source inverter.

Fig. 2. Block diagram of the PTC strategy for IM control. IM, induction motors; PTC, predictive torque control.
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values, the electromagnetic torque ( p
eτ ) can be calculated for each possible voltage vector. Finally, one voltage 

vector with minimum cost value, i.e. optimal voltage vector is selected.
Rotor and stator fluxes are needed in order to predict the values of p

sψ  and p
si . Instead of measuring these 

quantities, e
rψ  can be estimated using the rotor current model, and e

sψ  can be derived in terms of e
rψ .

, 1 , , , 1
1

− −

  
= + − −    

e e e
r r k r r s k r k r k
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T

ωiψ ψ ψ  (8)

, , ,= +e e
s k r r k s kk Lσ iψ ψ  (9)

where r m rk L L= , =r r rT L R  and 2= −s m rL L L Lσ
.

Based on the e
rψ  and e

sψ , the p
sψ  and p

si  can be predicted as follows:

( ), 1 , , ,+ = + −p e
s k s k s k s s kT Rv iψ ψ  (10)
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where 2= +s r rR R k Rσ  and =T L Rσ σ σ. 
Finally, the p

eτ  can be predicted in terms of the p
sψ  and p

si  as follows:

( ) ( )( )*

, 1 , 1 , 11.5p p p
e k p s k s kp m+ + += ℑτ ψ i  (12)

In the traditional PTC strategy, the cost function is the sum of the weighted torque and flux errors. The weighting 
factor for torque errors ( τλ ) is assumed to be one, while the weighting factor for flux errors ( ψλ ) is assumed to 
be greater than one. Also, an overcurrent protection term mI  can be included as in (13) to prevent the IM from 
overcurrents.

( ) ( ) ( )* *
, 1 , 1 , 1

p p
j e e k s s k m kg j j I jt + + += − + − +ψλ τ τ λ ψ ψ  (13)

The mathematical expression for the overcurrent protection term is as follows:
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where ,max| |si  is the maximum allowable amplitude of stator current.

3. Multi-Objective Optimisation of the PTC Strategy with Different  
Decision-Making Methods

In this section, multi-objective optimisation of the PTC strategy is presented in detail and then three different 
decision-making methods are applied to the Pareto set to choose one of the optimal solutions.

3.1. Multi-objective optimisation of the PTC strategy
This study aims to optimise the weighting factor in the cost function of the PTC strategy over flux and torque errors 
with an NSGA-II algorithm. The PTC strategy for IM has been implemented in Matlab/Simulink. Also, optimisation 
toolbox in Matlab has been used for the optimisation of the PTC strategy due to its user-friendly environment. All 
NSGA-II parameters in Table 1 have been chosen empirically and two cost functions used are as follows:
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where n is the length of the data captured during the simulation period. 
After 30 generations, the NSGA-II algorithm yields an optimal set of solutions, called Pareto front solutions, 

shown in Figure 3. A reasonable solution should be chosen among them to achieve better control performance. As 
seen in Figure 3, increasing the ψλ  value increases the torque errors and decreases the flux errors. Choosing one 
by the trial-and-error method is a tedious process. So, three new different decision-making methods are applied 
here to the Pareto front solutions to overcome this challenge.

3.2. Different decision-making methods
This paper studies the effect of different decision-making methods on control performance. For this purpose, three 
different decision-making methods based on ranking (Rojas et al., 2013), Euclidean distance (Zerdali and Barut, 
2017) and TOPSIS (Arshad et al., 2019) are considered.

In the ranking-based decision-making (RDM) method, cost values for each Pareto front solution are independently 
sorted for each cost function and a ranked value is assigned to a each candidate solution for each cost function. 
Lower errors correspond to a lower-ranking value. Next, the mean of both ranking values for each candidate solution 
is calculated and the solution with minimum mean ranking value is chosen. The pseudo-code of the RDM algorithm 
can be found in Table 2.

Fig. 3. Pareto front solutions. EDDM, Euclidean distance-based decision-making; RDM, Ranking-based decision-making; TOPSISDM, TOPSIS-based 
decision-making.

Table 1. NSGA-II parameters

Parameter Value Parameter Value

Population size 50 Crossover rate 0.8

Max. generation 30 Crossover function @crossovertwopoint

Lower bound 1 Mutation function @mutationadaptfeasible

Upper bound 200 Selection function @tournament

Pareto fraction 1 Tournament size 2

293



Effect of different decision-making methods on optimisation of PTC strategy

In the Euclidean distance-based decision-making (EDDM) method, first the cost values for each fitness function 
are normalised and then the Euclidean distance between the origin and the point formed by the cost values is 
calculated for each Pareto front solution. Next, the point with minimum Euclidean distance is selected. The pseudo-
code of the EDDM algorithm can be found in Table 3.

In the TOPSIS-based decision-making (TOPSISDM) method, the vectors containing the cost values are created 
for each cost function and then each vector is separately normalised. A normalised decision matrix is formed by 
combining these vectors. It is also possible to form a weighted normalised decision matrix by scaling each vector. 
Then, positive and negative ideal solutions for both vectors are calculated. Finally, the relative closeness of each 
solution is obtained, and the point with maximum relative closeness value is selected to use. The pseudo-code of 
the TOPSISDM algorithm can be found in Table 4.

The results obtained after applying the three decision-making methods to Pareto front solutions are marked in 
Figure 3. Both EDDM and TOPSISDM choose the same weighting factor, i.e. λk = 22.99, while the RDM selects  
λk = 94.56 as the weighting factor. Furthermore, the weighting factors for minimum torque error (λk = 7.24) and 
minimum flux error (λk = 196.93) are also indicated in Figure 3. It has been experienced during extensive tests that 
both TOPSISDM and EDDM often choose the same weighting factor or weighting factors which are very close.

4. Results
The PTC strategies with the weighting factors selected by three different decision-making methods are compared 
taking into account the torque and flux ripples, average switching frequency and total harmonic distortion (THD) of 
stator currents. A three-phase squirrel cage IM with the rated values and parameters in Table 5 is used. Simulation 
studies are performed in Matlab/Simulink with a sampling frequency of 20 kHz. The outer speed controller is of PI-
type and its proportional and integral gains are 5 and 50, respectively.

To evaluate the performance of decision-making methods, different operating conditions are considered. The 
details for these scenarios are as follows:

• Low-speed (5 rad/s) test at no-load and under the rated load (20 Nm),
• High-speed (100 rad/s) test at no-load and under the rated load and
• Speed reversal under the rated load.

Table 2. Pseudo-code of the RDM algorithm

1: Sort cost values for each cost function independently

2: Assign a rank value to each cost value for each cost function 

3: Calculate the average ranking score for each point 

4: Select the point with minimum average ranking score

RDM, ranking-based decision-making.

Table 3. Pseudo-code of the Euclidian distance-based decision-making algorithm 

1: Normalise the cost values for each cost function

2: Calculate the Euclidean distances between the origin and all points

3: Select the point with minimum Euclidean distance

Table 4. Pseudo-code of the TOPSISDM algorithm

1: Normalise the cost values for each cost function

2: Calculate the weighted normalised cost values 

3: Derive the positive and negative ideal solutions for each point

4: Measure the relative closeness of each point to the positive ideal solution

5: Select the point with a higher relative closeness coefficient

TOPSISDM, TOPSIS-based decision-making.
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The results for each scenario are presented in Figures 4–6, respectively. In addition to the weighting factors 
selected by the three different decision-making methods, the results of the weighting factors causing minimum flux 
and torque errors are also presented in Figures 4–6. Further, root mean square errors (RMSEs) and mean absolute 

Table 5. Rated values and parameters of the IM

Parameter Value Parameter Value

P 3 kW Rs 2.283 Ω

V 380 V Rr 2.133 Ω
I 6.9 A Lm 0.22 H

f 50 Hz Ls 0.2311 H

pp 2 Lr 0.2311 H

nm 1,430 r/min Jt 0.0183 kg/m2

τl 20 Nm Bt 0.001 N/m/s

IM, induction motors.

(a)                                                                   (b)

(c)                                                                   (d)
Fig. 4. Control performance at 5 rad/s under load changes. (a) RDM, (b) TOPSISDM and EDDM, (c) λk with minimum flux error and (d) λk with minimum 
torque error. EDDM, Euclidean distance-based decision-making; RDM, ranking-based decision-making; TOPSISDM, TOPSIS-based decision-making.
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errors (MAEs) for flux, speed and torque errors, to support the results quantitatively, are provided in Table 6.  
Furthermore, the statistics for each scenario can be seen in Table 7. The statistics given have been calculated using 
the following mathematical expressions.

max avg
rip

rated

100
−

= ×
χ χ

χ
χ  (16)

where maxχ , avgχ , and ratedχ  indicate the maximum, average, and rated values of the dummy variable χ, respectively. 
Flux and torque ripples can be calculated by substituting these quantitates instead of χ.

2

rms
THD

rms

100 1
 

= × −  
Ii
I1,

 (17)

(a)                                                                   (b)

(c)                                                                   (d)
Fig. 5. Control performance at 150 rad/s under load changes. (a) RDM, (b) TOPSISDM and EDDM, (c) λk with minimum flux error and (d) λk with 
minimum torque error. EDDM, Euclidean distance-based decision-making; RDM, ranking-based decision-making; TOPSISDM, TOPSIS-based decision-
making.
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where THDi  is the percentage THD of stator current for phase-a. rmsI  and rms1,I  are root mean square values of phase 
current and its fundamental component, respectively.

avg =
×sw

Nf
n d  (18)

where avgf  is the average switching frequency, N is the total state variations in power switches in the time interval 
of d seconds and swn  is the number of power switches used in the power converter.

The results for the first scenario in Figure 4 demonstrate the importance of weighting factor selection. Improper 
selection increases THD of stator currents as well as torque and flux ripples. Considering the results in Figure 4 
and Tables 6 and 7, It is found that the RDM method has a higher control performance than the TOPSISDM and 
EDDM methods. Both TOPSISDM and EDDM suffer from large flux ripples and harmonic distortions. When the 

(a) (b)

(c)                        (d)
Fig. 6. Control performance under speed reversals at a load of 20 N/m. (a) RDM, (b) TOPSISDM and EDDM (c) λk with minimum flux error and (d) 
λk with minimum torque error. EDDM, Euclidean distance-based decision-making; RDM, ranking-based decision-making; TOPSISDM, TOPSIS-based 
decision-making.
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remaining weighting factors with minimum flux and torque errors are evaluated, the weighting factor with minimum 
flux error provides a control performance close to the RDM. Also, it provides a slight reduction in flux fluctuations 
and switching frequency while slightly increasing torque fluctuations and current harmonics. On the other hand, the 
weighting factor with minimum torque error loses stability under the rated load.

In the second scenario in Figure 5, although both TOPSISDM and EDDM provide a slight reduction in torque 
ripples compared to the RDM, this improvement is not sufficient considering flux ripples, current harmonics and 
switching frequency. Therefore, using the RDM offers a better overall control performance. Similar to the first 
scenario, using the weighting factor with minimum flux ripples offers a control performance close to the RDM. The 
weighting factor with minimum torque ripples maintains the stability for this test but it suffers from higher flux and 
torque ripples, higher current harmonics and higher switching frequencies.

Table 6. RMSE and MAE values for speed, flux, and torque errors

eω e|ψ| eτ

Method RMSE MAE RMSE MAE RMSE MAE

Figure 4

RDM 0.0011 0.0773 1.6356e−05 0.0047 0.0018 0.5126

TOPSISDM and EDDM 0.0011 0.0801 3.7735e−04 0.0700 0.0013 0.3665

λk with minimum flux error 0.0011 0.0819 1.3734e−05 0.0039 0.0022 0.6145

λk with minimum torque error 0.0254 4.4070 0.0011 0.3258 0.0091 1.7584

Figure 5

RDM 0.0011 0.0736 1.6763e−05 0.0048 0.0018 0.5248

TOPSISDM and EDDM 0.0011 0.0710 5.8471e−05 0.0135 0.0013 0.3774

λk with minimum flux error 0.0011 0.0774 1.5247e−05 0.0044 0.0022 0.6195

λk with minimum torque error 0.0011 0.0888 3.0400e−04 0.0937 0.0028 0.5381

Figure 6

RDM 0.0717 3.1021 1.6366e−05 0.0047 0.0019 0.5262

TOPSISDM and EDDM 0.0717 3.1005 5.3103e−05 0.0121 0.0015 0.3789

λk with minimum flux error 0.0717 3.1044 1.4763e−05 0.0043 0.0022 0.6129

λk with minimum torque error 0.0718 3.1270 3.1176e−04 0.0921 0.0023 0.4763

EDDM, Euclidean distance-based decision-making; MAE, mean absolute errors; RDM, ranking-based decision-making; RMSE, root mean square 
errors; TOPSISDM, TOPSIS-based decision-making.

Table 7. Statistics for the selected weighting factors

Speed Load condition Method ψrip(%) Trip(%) THD(%) favg(kHz)

5 rad/s

Unloaded

RDM 1.4373 7.9100 7.99 0.495

TOPSISDM and EDDM 41.4168 7.9483 104.53 1.057

λk with minimum flux error 1.1648 9.5245 8.11 0.480

λk with minimum torque error 67.9872 8.0862 239.65 1.425

20 Nm

RDM 1.5064 7.1744 4.14 1.633

TOPSISDM and EDDM 24.4676 5.9958 63.00 3.239

λk with minimum flux error 1.0944 11.2602 4.23 1.307

λk with minimum torque error 130.5907 34.8483 372.38 3.359

150 rad/s

Unloaded

RDM 1.5116 7.5986 10.70 8.641

TOPSISDM and EDDM 10.9377 6.2151 32.54 9.747

λk with minimum flux error 1.1969 9.3206 10.70 8.358

λk with minimum torque error 14.7046 5.8510 100.02 9.987

20 Nm

RDM 1.4434 7.2562 4.25 9.233

TOPSISDM and EDDM 8.5045 5.9137 12.70 9.874

λk with minimum flux error 1.2327 9.5934 4.47 9.077

λk with minimum torque error 14.5080 10.1105 23.05 10.074

EDDM, Euclidean distance-based decision-making; RDM, ranking-based decision-making; TOPSISDM, TOPSIS-based decision-making; THD, total 
harmonic distortion.
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Further, the comments made for the previous two scenarios are also valid for the last scenario shown in Figure 6.  
The results show that higher values of the weighting factors improve the stability of the PTC strategy, but the optimal 
decision can be made by using the RDM method that yields a better overall control performance.

The reason for performance degradations at lower values of the weighting factor is that the effect of the flux term 
in the cost function is reduced and the torque term is more effective in the selection of switching states. This leads 
to problems with flux stabilisation which hinders correct electromagnetic torque generation. In these cases, more 
current is requested to generate the reference torque, causing significant current distortions.

5. Conclusion
In this paper, optimisation of the PTC strategy has been performed by a NSGA-II algorithm through the flux 
and torque errors, and the effect of different decision-making methods on the selection of weighting factors has 
been compared in terms of flux and torque ripples, current harmonics and switching frequencies. Simulation 
studies show that the higher values of the weighting factor associated with flux error term improve stability of 
the PTC strategy, and the RDM method gives the optimal weighting factors. Also, the weighting factor with 
minimum flux error can be used as an alternative to the RDM. Nevertheless, only one weighting factor has been 
considered in this paper. Future studies will focus on testing the RDM in the presence of two or more weighting 
factors.
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