PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of Substrates Used for Green Roofs in Limiting Rainwater Runoff

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The retention of rainwater is one of the main functions of green roofs in urban areas. One of the elements influencing the variability of rainwater retention on green roofs is the configuration of the roof, i.e. the combination of drainage and vegetation layers and plants. In the article, laboratory studies regarding the influence of the vegetation layer of the green roof on the retention of rainwater were carried out, and the influence of changes in the initial moisture content in extensive and intensive substrates on retention were compared. The analysis of seven randomly selected substrates showed that the runoff coefficients range from 0.59 to 0.71. In the case of the retention, statistically significant differences were observed in terms of the rainfall volume as well as the initial moisture content.
Słowa kluczowe
Rocznik
Strony
86--92
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska 166, 02-787 Warszawa, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska 166, 02-787 Warszawa, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska 166, 02-787 Warszawa, Poland
Bibliografia
  • 1. Aslup S.E., Ebbs S.D., Battaglia L.L., Retzlaff W.A. 2011. Heavy Metals in Leachate from Simulated Green Roof Systems. Ecological Engineering 37, 1709–1717.
  • 2. Baryła, A., Karczmarczyk, A., Bus, A., Kożuchowski, P. 2017. Ocena przydatności wskaźnika opadów uprzednich do opisu uwilgotnienia podłoży na zielonych dachach typu ekstensywnego (Assessing the Usefulness of the Previous Rainfall Indicator in Describing the Moisture Content of Substrates on Extensive Type Green Roofs) [in Polish]. Acta. Sci. Pol., Formatio Circumiectus, 16(4), 23–34.
  • 3. Bengtsson L., Grahn L., Olsson J. 2005. Hydrological Function of a Thin Extensive Green Roof in Southern Sweden. Nordic Hydrol. 36 (3), 259–268.
  • 4. Berndtsson, J. Czemiel 2010. Green Roof Performance Towards Management of Runoff Water Quantity and Quality: a Review. Ecological Engineering 36, 351–360.
  • 5. Bogacz, A., Woźniczka, P., Burszta-Adamiak, E., Kolasińska, K. 2013. Methods of Enhancing Water Retention in Urban Areas. Scientific Review Engineering and Environmental Sciences, 22 (1), 27–35 (in Polish).
  • 6. Buffam I., Mitchell M.E., Durtsche R.D. 2016. Environmental Drivers of Seasonal Variation in Green Roof Water Quality. Ecological Engineering 91, 506–514.
  • 7. Burns M.J., Fletcher T.D., Walsh C.J., Ladson A.R., Hatt B.E. 2012. Hydrologic Shortcomings of Conventional Urban Stormwater Mmanagement and Opportunities for Reform. Landsc. Urban Plan. 105, 230–240.
  • 8. Carpenter D., Kaluvakolanu P. 2011. Effect of Roof Surface Type on Stormwater Run-off from Full-scale Roofs in a Temperate Climate. J. Irrigat. Drain. Eng. 137, 161–169.
  • 9. Carter T.L. Rasmussen T.C. 2006. Hydrologic Behavior of Vegetated Roofs. Journal of the American Water Resources Association 42 (5), 1261–1274.
  • 10. Chen C.F. 2013. Performance Evaluation and Development Strategies for Green Roofs in Taiwan: A review. Ecological Engineering, 52, 51–58.
  • 11. Cipolla S.S., Maglionico M., Stojkov I. 2016. A Long-term Hydrological Modelling of an Extensive Green Roof by Means of SWMM. Ecological Engineering 95, 876–887.
  • 12. DeNardo J.C., Jarett A.R., Manbeck H.B., Beattie D.J., Berghage R.D. 2005. Stormwater Mitigation and Surface Temperature Reduction by Green Roofs. Trans. ASAE 48 (4), 1491–1496.
  • 13. DAFA. Dachy zielone. 2015. Wytyczne do Projektowania, Wykonywania i Pielęgnacji Dachów Zielonych–Wytyczne dla Dachów Zielonych (Guidelines for Designing, Constructing and Caring for Green Roofs – Guidelines for Green Roofs) [in Polish]; Stowarzyszenie Wykonawców Dachów Płaskich i Fasad (DAFA): Opole, Poland.
  • 14. Elliott R.M., Gibson R.A., Carson T.B., Marasco D.E., Culligan P.J., McGillis W.R. 2016. Green Roof Seasonal Variation: Comparison of the Hydrologic Behavior of a Thick and a Thin Extensive System in New York City. Environ. Res. Lett. 11, 074020.
  • 15. Fioretti R., Palla A., Lanza L. G., Principi P. 2010. Green Roof Energy and Waterrelated Performance in the Mediterranean Climate. Building and Environment, 45, 1890–1904.
  • 16. FLL 2008. Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL). Guidelines for the Planning, Construction and Maintenance of Green Roofing – Green Roofing Guideline; FLL: Bonn, Germany.
  • 17. Geiger W. Dreiseitl H. 1999. Nowe sposoby odprowadzania wód deszczowych (New Means of Rainwater Drainage) [in Polish] Poradnik retencjonowania i infiltracji wód deszczowych do gruntu na terenach zabudowanych. Oficyna Wydawnicza Projprzem-EKO, Bydgoszcz.
  • 18. Getter K.L., Rowe D.B., Andresen J.A. 2007. Quantifying the Effect of Slope on Extensive Green Roof Stormwater Retention. Ecological Engineering, 31, 225–231.
  • 19. Gwóźdz K., Hewelke E., Źakowicz S., Sas W., Baryła A. 2016. Influence of Cyclic Freezing and Thawing on the Hydraulic Conductivity of Selected Aggregates Used in the Construction of Green Roofs. Journal of Ecological Engineering 17(4), 50–56.
  • 20. International Organization for Standardization (ISO). PN-ISO 10390:1997 Equivalent to ISO 10390:1994 Soil Quality – Determination of pH; ISO: Geneva, Switzerland, 1998.
  • 21. Karczmarczyk A., Baryła A., Kożuchowski P. 2017. Design and Development of Low P-Emission Substrate for the Protection of Urban Water Bodies Collecting Green Roof Runoff. Sustainability 9, 1795.
  • 22. Karczmarczyk A., Bus A., Baryła A. 2018. Phosphate Leaching from Green Roof Substrate – Can Green Roofs Polłute Urban Water Bodies?. Water 10, 199.
  • 23. Köhler M., Poll P.H. 2010. Long-Term Performance of Selected Old Berlin Green Roofs in Comparison to Younger Extensive Green Roofs in Berlin. Ecological Engineering 36, 722–729.
  • 24. Li, Y., Babcock Jr., R.W. 2014. Green Roof Hydrologic Performance and Modeling: a Review. Water Sci. Technol. 69, 727–738.
  • 25. Mentens J., Raes D., Hermy M., 2006. Green Roofs as a Tool for Solving the Rainwater Runoff Problem in the Urbanized 21st Century? Landscape Urban Plann. 77 (3), 217–226.
  • 26. Molineux Ch. J., Fentiman Ch. H., Gange A.C., 2009. Characterising Alternative Recycled Waste Materials for Use as Green Roof Growing Media in the U.K. Ecological Engineering 35, 1507–1513.
  • 27. Morgan S., Celik S., Retzlaff W. 2013. Green Roof Storm-Water Runoff Quantity and Quality. J. Environ. Eng. – ASCE 139 (4), 471–478.
  • 28. Nagase A., Dunnett N. 2011. The Relationship Between Percentage of Organic Matter in Substrate and Plant Growth in Extensive Green Roofs. Landsc. Urban Planning, 103, 230–236.
  • 29. Pęczkowski G., Orzepowski W., Pokładek R., Kowalczyk T. Żmuda R. 2016. Retention Properties of the Type of Extensive Green Roofs as an Example of Model Tests. Acta Sci. Pol., Formatio Circumiectus, 15(3), 113–120 (in Polish).
  • 30. Simmons M.T., Gardiner B., Windhager S., Tinsley J. 2008. Green Roofs are Not Created Equal: the Hydrologic and Thermal Performance of Six Different Extensive Green Roofs and Reflective and Non-reflective Roofs in a Sub-tropical Climate. Urban Ecosyst. 11(4), 339–348.
  • 31. Speak A.F., Rothwell J.J., Lindley S.J., Smith C.L. 2013. Rainwater Runoff Retention on an Aged Intensive Green Roof. Science of the Total Environment, 461–462, 28–38.
  • 32. Sims A.W., Robinson C.E., Smart C.C., Voogt J.A., Hay G.J., Lundholm J.T., et al. 2016. Retention Performance of Green Roofs in Three Different Climate Regions. J. Hydrol. 542, 115–124.
  • 33. Stovin V., Poë S., DeVille S., Berretta C. 2015. The Influence of Substrate and Vegetation Configuration on Green Roof Hydrological Performance. Ecological Engineering 85, 159–172.
  • 34. Teemusk A., Mander Ű. 2007. Rainwater runoff quantity and quality performance from a green roof: The effects of short-term events. Ecological Engineering 30, 271–277.
  • 35. Toland D.C., Haggard B.E., Boyer M.E., 2012. Evaluation of Nutrient Concentrations in Runoff Water from Green Roofs, Conventional Roofs, and Urban Streams. Transactions of the ASABE 55(1), 99–106.
  • 36. Tokarczyk-Dorociak K., Walter E., Kobierska K., Kołodyński R. 2017. Rainwater Management in the Urban Landscape of Wroclaw in Terms of Adaptation to Climate Changes. J. Ecol. Eng. 18(6):171–184.
  • 37. Villarreal, E.L., Bengtsson, L. 2005. Response of a Sedum Green-Roof to Individual Rain Events. Ecological Engineering 25 (1), 1–7.
  • 38. VanWoert N.D., Rowe D.B., Andresen J.A., Rugh C.L., Fernandez R.T., Xiao L. 2005a. Green Roof Stormwater retention. J. Environ. Qual. 34, 1036–1044.
  • 39. Zhang L., Dawes W.R., Walker G.R. 2001. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour. Res. 37, 701–708.
  • 40. Zhang S., Guo Y. 2013. Analytical Probabilistic Model for Evaluating the Hydrologic Performance of Green Roofs. J. Hydrol. Eng. 18, 19–28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2b9e049-1142-4c99-b08c-a874ac13c90f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.