Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the methods for defining the geometry of the contact surface between a rigid wheel and a rigid rail. The calculation model that has been developed allowed for any arrangement of the wheel in relation to the rail. This allowed for the creation of a system of nonlinear equations, the solution of which allows one to determine the presumable wheel-rail contact points. The search for the solution of the system of strongly nonlinear equations was conducted using a few optimization methods. This allowed one to study both the selection of the starting point and the convergence of the method.
Rocznik
Tom
Strony
53--64
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Institute of Theoretical and Applied Mechanics, Silesian University of Technology Gliwice, Poland
autor
- Institute of Theoretical and Applied Mechanics, Silesian University of Technology Gliwice, Poland
Bibliografia
- [1] Grosan C., Abraham A., A new approach for solving nonlinear equations systems, IEEE Transactions on Systems, Man, and Cybernetics - part A: Systems and Humans 2008, 38, 3, 698-714.
- [2] Nedzhibov G.H., A family of multi-point iterative methods for solving systems of nonlinear equations, Comput. Appl. Math. 2008, 222, 244-250.
- [3] Taheri S., Mammadov M., Solving systems of nonlinear equations using a globally convergent optimization algorithm, Global J. of Tech. and Optim. 2012, 3, 132-138.
- [4] Chapra S.C., Canale R.P., Numerical Methods for Engineers, 6th edition, McGraw-Hill Companies, 2010.
- [5] Yang Y.W., Cao W., Chung T., Morris J., Applied Numerical Methods Using Matlab®, John Wiley & Sons, 2005.
- [6] Kiusalaas J., Numerical Methods in Engineering with Matlab®, Cambridge University Press, 2009.
- [7] Jureczko M., Metody optymalizacji - przykłady zadań z rozwiązaniami i komentarzami, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2009.
- [8] Quarteroni A., Saleri F., Scientific Computing with Matlab and Octave, 2nd edition, Springer, 2006.
- [9] Mathews J.H., Fink K.D., Numerical Methods Using Matlab, Prentice Hall, 1999.
- [10] Deuflhard P., A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting, Numerical Mathematics No 22, Springer -Verlag, 1974, 289-315.
- [11] Hagan M.T., Menhaj M.B., Training feedforward networks with the Marquardt algorithm, IEEE Trans. on Neural Networks 1994, 5, 6, 989-993.
- [12] Transtrum M.K., Sethna J.P., Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization, Preprint submitted to Journal of Computational Physics, January 30, 2012.
- [13] Yuan Y.X., A review of trust region algorithms for optimization, ICM99: Proc. 4th Int. Congress on Industrial and Applied Mathematics, eds. J.M. Ball, J.C.R. Hunt, Oxford University Press 2000, 271-282.
- [14] Yuan Y.X., Recent advances in trust region algorithms, Math. Program., Ser. B 2015, 249-281.
- [15] Mortenson M.E., Geometric Modeling, Wiley, New York 1985.
- [16] Duda S., Modelowanie i symulacja numeryczna zjawisk dynamicznych w elektrycznych pojazdach szynowych. Monografia nr 405, Wydawnictwo Politechniki Śląskiej, Gliwice 2012.
- [17] Duda S., Numerical simulations of the wheel-rail traction forces using the electromechanical model of an electric locomotive, J. Theor. Appl. Mech. 2014, 52, 2, 395-404.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2b8ddb7-2274-4e4d-8ca0-e19678b7ea60