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Abstract. The article presents the methods for defining the geometry of the contact surface 

between a rigid wheel and a rigid rail. The calculation model that has been developed 

allowed for any arrangement of the wheel in relation to the rail. This allowed for the creation 

of a system of nonlinear equations, the solution of which allows one to determine the pre-

sumable wheel-rail contact points. The search for the solution of the system of strongly 

nonlinear equations was conducted using a few optimization methods. This allowed one to 

study both the selection of the starting point and the convergence of the method. 
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1. Introduction 

Systems of nonlinear equations occur in mathematical models of physical phe-

nomena in various fields of science such as mechanics, engineering, medicine, 

chemistry or robotics. Their proper solution at a low computational cost is signifi-

cant in the case of studying model physical systems in which the solution of 

nonlinear equations is one of the stages in solving a more complex problem 

and where the precision of the solution has an effect on the solution of the entire 

model. Among others, this concerns the numerical simulations of a rail-vehicle 

movement on any track. 

The dynamic equations describing the complex system of a vehicle, drive 

and track are most often highly complex and require considerable amounts of time 

for calculation. This substantiates the need to find an effective tool that would 

serve as the solution of individual models. 

One of the methods to solve the problem of the wheel-rail interaction is to 

define the geometries of the contacting surfaces as parameters. Finding the contact 

point between the cooperating elements - the wheel and the rail - is conducted 

by solving a system of four nonlinear algebraic equations. 
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The application of iterative methods for solving the problem referred to above 

requires the starting point to be provided - that is, the precise indication of a contact 

point. Otherwise the method shall not be convergent. This especially concerns 

the analyses of cases where the continuity of contact between the wheel and the rail 

is interrupted (e.g. wheel motion at the railway junction - Fig. 1). The solution 

of such a problem involves the determination of all possible solutions. It is thus 

a specific problem of multicriteria optimization. 

 

 

 

Fig. 1. Wheel motion at the railway junction with possibility of two-point contact 

There are many optimization and numerical methods for solving systems 

of equations. These, however, mostly concern finding solutions for single linear 

or nonlinear equations, systems of linear equation with one or many unknowns, 

or systems of nonlinear equations with just one unknown. In the case of systems 

of equations that do not exhibit the properties of polynomials of linear functions 

and have many variables, however, there are no means which guarantee the deter-

mination of all possible solutions [1-3]. 

One of the applications of optimization methods is the determination of radixes 

of nonlinear equations or systems of nonlinear equations. There are many methods 

to obtain approximate solutions for nonlinear equations with one variable. Iterative 

methods are used most commonly, for example the bisection method, the secant 

method, the false-position method, Brent’s method or Simple Fixed - Point Itera-

tion. One should remember, however, that using the methods referred to above, 

the roots of the equation are determined with a precision [4-6]. Wishing to deter-

mine all possible solutions of a system of nonlinear equations may be presented as:  
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where n stands for the size of the problem, xi refers to the i-th independent variable, 

and fi(.) is the i-th nonlinear equation, one should modify the methods presented 

above or develop a hybrid method. 

The problem in solving the system (1) may be transformed to the form of an  

optimization problem consisting in the determination of the optimum of the objec-

tive function expressed as: 

 ( ) ( )∑
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It is evident that after such a transformation, the determined global minimum 

of the equation (2) is substituted for the (1). As a result, the application of the 

optimization method in the solution of equation (2) shall allow one to determine 

solution of the problem presented in the following form (1). 

2. The application of optimization methods in solving a system 

of nonlinear equations with multiple variables  

Let us assume that F = [f1, f2,…, fn]
T
 is a n-dimensional vector corresponding 

to the set of the function, while x = [x1, x2,…, xn]
T
 denotes a n-dimensional vector 

of independent variables. 

2.1. Newton’s method 

To solve the problem of the system of a n-number of nonlinear equations 

represented by the dependence (1), the basic Newton’s method is generalized 

to a n-number of dimensions [5, 7-9]. Assuming that the k
x  vector is a certain 

approximation of the searched solution and omitting the terms of higher order 

in the expansion of individual functions of many variables into Taylor’s series, 

that are subsequently equated to zero, one will obtain an approximate dependence 

for the k + 1 of the iteration: 

 ( ) ( ) ( )kkkk
xFxxxJ −=−⋅

+1 . (3) 

The J(x
k
) matrix of partial derivatives is the Jacobian matrix. The solution 

of the equation (3) in relation to the 1+k
x  vector equals: 

 ( ) ( )kkkk
xFxJxx ⋅−=

−+ 11 . (4) 

The termination criterion in Newton’s method assumes the following form: 

 ε≤−
+ kk
xx

1 , (5) 

where ε  denotes the required precision of calculations and ||.|| is the Euclidean 

norm of the vector. 
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2.2. Damped Newton’s method 

One of the methods used to mitigate the problem of the lack of convergence 

of Newton’s method, or, to be more precise, its dependence on the selection 

of the starting point, is the combination of the idea of minimization with Newton’s 

method. What emerges is the hybrid method. With each iteration of the classic 

Newton’s method, after determining the direction of research, the method adds 

a minimization of the λ length of that step in such a way that the Euclidean norm 

of the F vector value in the subsequent approximation of the starting point is 

decreased along with the progress of the optimization process. This modified 

Newton’s method is called the damped Newton’s method. In that method, subse-

quent approximations of the stationary point are determined using the dependence 

[10]: 

 1 1
( ( ) ( ))

k k k k
λ

+ −

= + ⋅ − ⋅x x J x F x , (6) 

where the λ  step length is selected in such a way as to ensure that the following 

condition is fulfilled: 
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This way, the direction of the step in the damped Newton’s method is a local 

direction of decrease in the value of the F function vector. A shift by the complete 

length of Newton’s step determined in this way, however, does not need to lead to 

a decrease in the F value. This is why the length of the step determined in such 

a way is usually decreased by half. Instead of using a half-step, however, another 

strategy of finding the λ, which also leads to the decrease in the F value, may be 

applied. If the λ value drops beneath a certain acceptable threshold, the calculations 

should be stopped, but the dependence (7) guarantees that such a λ exists, where 
1
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Fig. 2. Block diagram representing the algorithm of the damped Newton’s method 
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Figure 2 shows a block diagram representing the algorithm of the damped 

Newton’s method. 

2.3. Levenberg-Marquardt method 

Another algorithm that is often applied for solving systems of nonlinear equa-

tions is the Levenberg-Marquardt method (abbreviated as LM) [11, 12]. In the case 

of this method, in the beginning of the algorithm the method of steepest descent is 

applied for subsequent approximations of the stationary point relatively distant 

from the minimum of the F vector. In this method, the direction of search provid-

ing the steepest descent of the function value is determined based on the values 

of the sensitivity coefficients of the function in relation to its individual parameters 

and based on the calculation results from the previous step. Subsequently, near 

the minimum of the F vector, the method of steepest descent is replaced with 

the method of linearization of the regression function such as the Gauss-Newton’s 

method. Subsequently, the search for the minimum is preceded by an analytical de-

termination of its location in such a way as if the problem was linear. Further pos-

sible iterations are used for a precise localization of the minimum. This may be 

necessary due to a deviation related to the simplification to a linear problem. 

In the LM method, subsequent approximations of the stationary point are de-

termined using the dependence: 
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where: 

H
k
 - hessian of the F(x) function vector in the x

k
 point, 

λ - regulation parameter, 

diag[H
k
] - diagonal matrix of the hessian of the F(x) function vector in the x

k
 point, 

( )
k

∇F x  - gradient of the F(x) function vector in the x
k
 point. 

Generally, the sequence of the LM method may be presented as follows: 

1. Assume a starting point. 

2. Determine the value of the next approximation of the stationary point in line 

with the equation (8). 

3. Calculate the value of deviation in the x
k+1

 point. 

4. If the deviation has increased, return to the x
k
 value, increase the value of λ by k 

orders of magnitude and return to step 2 (the linear approximation of the 

minimized function in the neighborhood of x
k
 turned out to be insufficiently 

accurate, so the „impact” of the steepest descent method is increased). 

5. If the deviation has decreased, accept the step and decrease the value of λ by k 

orders of magnitude (the assumption of linearity of the minimized function 

in the neighborhood of x
k
 turned out to be insufficiently accurate, so the  

“impact” of the Gauss-Newton’s method is increased). 



M. Jureczko, S. Duda 58 

2.4. Trust region method 

Trust region methods (abbreviated as TR) are relatively new optimization algo-

rithms [13, 14]. These methods are based upon a notion that an algorithm exhibits 

a priori knowledge regarding the local behaviour of the objective function and 

that this knowledge is “extended” to much wider regions. The region in which 

the objective function is approximated is called the trust region. The trust region is 

most often assumed to be a sphere with an r
k
 radius. In each iteration the trust area 

concentrated around the best x
k
 solution is determined. Subsequently, the FM(x) 

function is determined, which approximates the primary objective function to 

a certain extent. This way, the complicated optimization problem is down to solv-

ing a quadratic programming problem, that is, the determination of the x
Mk

 point 

minimizing the FM(x) function. It is known that the solution obtained in such a way 

will differ from the actual minimum of the F function within the trust region, but it 

is assumed that the difference will not be significant. Another significant assump-

tion is the assumption that the inequality: 

 ( ) ( )1−<
kMk

xFxF  (9) 

will be satisfied in each iteration step. It meaning that the value of the F function 

shall decrease with each iteration. 

The length of the step in the trust region method is usually determined before 

the correction of the direction. If the decrease in the value of the FM(x) function is 

achieved, the assumed trust region is assumed to be correct. If, on the other hand, 

the improvement is too subtle or no improvement is noted, the trust region should 

be changed. This means that the r
k
 radius of the trust region should be properly 

adjusted to the variability of the F function. 

The general sequence of TR method is as follows: 

1. Initialization: Select an x
0
 starting point. Determine the initial r

k
 trust region.  

2. For the x
k
 point, determine the model of FM(x) function in its neighbourhood. 

3. Find such an k
x
~  

approximation of point that: 
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Mk k
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∈Ω
=
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4. Verify whether the size of the trust region had been selected properly. If so, 

substitute x
k 
=

k
x
~

 and continue to step 6. Otherwise continue with step 5. 

5. Decrease the trust region to r
s
, substitute r

k
:= r

s
 and go to step 3. 

6. If the termination criterion is fulfilled, the x
k
 should be assumed to be the 

optimal solution. Otherwise, go to step 7. 

7. Verify whether the trust region should be increased to r
B
. If so, substitute  

r
k
: = r

B
, and continue to step 8. Otherwise go to step 1. 

8. Substitute k := k + 1, go to step 2. 
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3. Formulating a system of nonlinear equations 

The surface area of a wheel or rail was obtained by drawing flat curves consti-

tuting the profile of the wheel or rail around the rotation axis of the wheel or along 

the line of the track. The definition of the geometries of contact surfaces between 

the rigid wheel and the rigid rail is based on four independent parameters: sr and ur 

describing the geometry of the rail surfaces and sw and uw describing the surface 

of the wheel - as presented in Figure 3. 

 

 

Fig. 3. Wheel and rail surface parameters 

The location of the radius of the vector in the Q contact point in a system 

of coordinates related to the wheel or the rail is only a function of the parameters 

of their surfaces. Considering the areas of the rail and the wheel determined by 

the p(sr,ur) and q(sw,uw), parametric functions, the surface of the wheel will remain 

in contact with the surface of the rail when [15]: 

• normal vectors to the nr and nw surfaces of the presumed contact points must be 

in parallel. This condition means that the nr vector exhibits a zero projection 

on the t
s

w and t
u

w tangent vector: 
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• the d vector representing the distance between the presumed contact points must 

be in parallel to the n w. This condition may be mathematically presented as: 
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The geometric conditions presented in equations (11) and (12) are four nonlinear 

equations with four unknowns. The system of equations provides a solution in the 

form of locations of the presumable contact points. The presented formula used 

for finding the presumed contact points is limited to parametric convex surfaces. 

In reality, if one or both of the surfaces were concave, the formula could lead to 

multiple solutions. 

4. Formulating the optimization problem 

To conduct the analysis of the impact of the applied optimization method on 

the determination of the contact point between the surfaces of the rail and wheel, 

a calculation model has been developed for the wheel-rail system. The model has 

been presented in Figure 4. By applying various values of the ϕ angle - rotation 

about longitudinal axis (roll, sway), the model allows for any orientation of the 

wheel in relation to the rail. 

 

 

Fig. 4. The cooperation model of wheels with rail 

The parameters defining the geometry of the wheel-rail contact surface have 

been selected in the optimization process as decision variables. The parameters 

were as follows: 

s
r
 - length of the space curve of the rail, that is, the distance of the rail profile 

at which the contact point is located from the point in which the analysis 

has been started [m], 

u
r
 - a coordinate specifying the lateral position of the contact point in the system 

of coordinates of the rail profile [m], 

s
w
 - value of the rotation angle of the system of coordinates of the wheel profile 

in relation to the system of coordinates related to the finite element node, 

that is, specifying the angular displacement of the contact point [rad], 

u
w
 - a coordinate specifying the lateral position of the contact point in the system of 

coordinates of the wheel profile [m]. 

The solution of the optimization problem presented in that way consisted 

in the determination of roots of the system of strongly nonlinear equations. 
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An additional hindrance in the development of a useful algorithm was constituted 

by the fact that the wheel could be positioned under various angles in relation 

to the rail. This is why the calculations were conducted for various ϕ angles 

of superelevation, which means that the conditions assumed in [16, 17] allowed 

one to formulate a system of nonlinear equations that may not contain satisfying 

solutions. 

Limitations resulting from the assumed model of the wheel-rail contact geome-

try model were superimposed on each of the decision variables. The form was 

as follows: 

 1 1
r
s− ≤ ≤  (13) 

 039.0039.0 ≤≤−
r
u  (14) 

 7854.07854.0 ≤≤−
w
s  (15) 

 03.003.0 ≤≤−
w
u  (16) 

The optimization calculations have been conducted using the methods described 

in Section 2. 
 
a) 

 

b) 

c) 

 

d) 

Fig. 5. Diagram presenting the values of each of the variables depending on the superelevation 
angle: a) x

1
 variable, b) x

2
 variable, c) x

3
 variable, d) x

4
 variable, for x = [1;0;0;0] 
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a) 

 

b) 

c) 

 

d) 

Fig. 6. Diagram presenting the values of each of the variables depending on the superelevation 
angle: a) x

1
 variable, b) x

2
 variable, c) x

3
 variable, d) x

4
 variable, for x = [0.1;‒0.0062;0;0.0031] 

One of the greatest limitations related to the application of iterative algorithms 

is the lack of possibility to obtain all possible solutions. The achieved result is  

dependent on the selection of the starting point for calculations. This is why the 

calculations were conducted for several starting points that have been selected 

based on the authors’ experience. The selected starting points were as follows: 

x = [1;0;0;0] and x = [0.1;‒0.0062;0;0.0031]. 

Figures 5 and 6 present the optimal values of each of the parameters obtained 

using each of the optimization methods, depending on the superelevation angle 

in the selection of the starting point in [1;0;0;0] (Fig. 5) and [0.1;‒0.0062;0;0.0031] 

(Fig. 6). 

7. Conclusions 

One of the methods to detect a failure of a given optimization method is to 

verify the number of conducted iterations. If that number exceeds a given limit, 

the optimization process is stopped. In case of the applied optimization methods, 

the analysis of their course allows one to confirm the validity of their selection. 
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While analysing the results obtained for the superelevation angle of 0° and 5°, 

one may note that all the analyzed methods exhibited convergence to the optimal 

solution, while TR appeared to be the fastest of the methods. The DN and LM 

methods (for the 0° angle), on the other hand, were the most time-consuming. 

The DN method has been the most independent from the selection of the starting 

point. In case of calculations for the superelevation angle of 10°, the TR method 

was the quickest and the Newton’s method appeared to be the most time-

consuming and the least independent from the selection of the starting point. 

In case of the superelevation angle in the 15°÷30° range, only the LM and TR 

methods exhibited convergence to the stationary point. The obtained values of 

the starting point, however, were different. Changes of the trust field radius in the 

TR method did not improve the result. While analyzing the time of computation, 

the trust field method appeared to be the most efficient one. In case of the 

superelevation angle in the 35°÷45° range, all methods exhibited convergence to 

a solution which was not the root of the analyzed system of equations. Thus, 

the minimum that was determined was local. 

The obtained results have confirmed the prior conclusion of the authors, that is, 

the impact of the selection of the starting point on the obtained result. Thus, 

the selection of top or bottom limits imposed on each of the decision variables as 

the starting points - which was not presented in this article - did not allow one to 

determine the solutions from the field of possible solutions. 

Table 1 presents the best results obtained for each of the superelevation angles. 

The TR and LM were the methods that were the most independent from the selec-

tion of the starting point. 

Table 1 
The best results obtained for each of the superelevation angles 

Superelevation 
angle [°] x̂  [m] F(x̂) Methods 

0° [0.1; –0.0061; 0; 0.0032] 10–6·[0; 0.1346; 0; 0.0042] all 

5° [0.1; –0.0085; 0; 0.0002] 10–10·[0; 0.1168; 0; 0.0023] all 

10° [0.1; –0.0214; 0; –0.0204] 10–12·[0; –0.8047; 0; –0.2130] all 

15° [0.1; –0.0218; 0; –0.0232] 10–16·[0; -0.8327; 0; 0.4857] LM 

20° [0.1; –0.0199; 0; –0.0144] 10–10·[0; 0.9305; 0; –0.0167] LM, TR 

25° [0.1; –0.0129; 0; –0.0049] 10–12·[0; 0.1113; 0; 0.1106] LM, TR 

30° [0.1; –0.0220; 0; –0.0245] 10–9·[0; 0.8506; 0; 0.0782] LM, TR 

35° [0.1; –0.0236; 0; –0.03] [0; –0.0087; 0; 0.0120] LM, TR 

40° [0.1; –0.0259; 0; –0.03] [0; –0.0418; 0; 0.0522] LM, TR 

45° [0.1; –0.0285; 0; –0.03] [0; –0.1011; 0; 0.0840] LM, TR 

 

While analysing the methods of determining four nonlinear equations with four 

unknowns (as described in Section 3), one may note that they are limited to finding 



M. Jureczko, S. Duda 64 

only the presumable points of contact of parametric convex surfaces. One may 

presume that in case of a greater superelevation angle, one of the surfaces would be 

concave. Then, in the case of such assumed geometric limitations (see the limita-

tions superimposed on each of the decision variables), it may not allow one to 

determine the roots. 
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