PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role and response of ocean–atmosphere interactions during Amphan (2020) super cyclone

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyclone Amphan (May 2020) is one of the strongest cyclones in the recent decade during premonsoon season in the North Indian Ocean. Satellite, observational and reanalysis data products were analysed before, during and after the passage of Amphan to understand the role of ocean–atmosphere interactions for the rapid intensification, recurvature and upper ocean response. To examine the pre-oceanic conditions and rapid intensifcation of Amphan in the North Indian Ocean, a twolayer reduced gravity model is used to derive the upper ocean thermal profle to estimate the tropical cyclone heat potential (TCHP). Results reveal that prior to the passage of Amphan, unusual high TCHP anomalies (>25 kJcm−2) and SST anomalies (>1 °C) are evident. Time-longitude, sea level anomalies suggest that high TCHP and SST are associated with propagation of downwelling Kelvin and Rossby waves in the Equatorial Indian Ocean and the Bay of Bengal, respectively. Before rapid intensification, Amphan changes its path from north-northwestward to north-northeastward direction. Amphan produced significant left rainfall asymmetry during its passage. Analysis from mid-tropospheric (600 hPa) equivalent potential temperature (K) reveals the presence and meander of dryline along the western Bay of Bengal (BoB) (< 325 K). The upper ocean response during life history of Amphan is analysed from Argo floats within vicinity of cyclone track. The key finding in this study is that mechanical mixing and intense precipitation are responsible for the changes in mixed layer depth and barrier layer along the Amphan track. These results indicate that the presence of dryline in the middle troposphere is crucial for the recurvature of Amphan track during premonsoon season. This study highlights that large-scale environmental and ocean–atmosphere interactions for the rapid intensification of cyclone in the North Indian Ocean.
Czasopismo
Rocznik
Strony
1997--2010
Opis fizyczny
Bibliogr. 88 poz.
Twórcy
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Sundargarh District, Odisha, Rourkela 769008, India
autor
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Sundargarh District, Odisha, Rourkela 769008, India
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Sundargarh District, Odisha, Rourkela 769008, India
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Sundargarh District, Odisha, Rourkela 769008, India
Bibliografia
  • 1. Akter N (2015) Mesoscale convection and bimodal cyclogenesis over the Bay of Bengal. Mon Weather Rev 143:3495–3517. https://doi.org/10.1175/MWR-D-14-00260.1
  • 2. Akter N, Tsuboki K (2014) Role of synoptic-scale forcing in cyclogenesis over the Bay of Bengal. Clim Dyn 43:2651–2662. https://doi.org/10.1007/s00382-014-2077-9
  • 3. Alam MM, Hossain MA, Shafee S (2003) Frequency of Bay of Bengal cyclonic storms and depressions crossing different coastal zones. Int J Climatol 23:1119–1125. https://doi.org/10.1002/joc.927
  • 4. Albert J, Bhaskaran PK (2020) Ocean heat content and its role in tropical cyclogenesis for the Bay of Bengal basin. Clim Dyn 55:3343–3362. https://doi.org/10.1007/s00382-020-05450-9
  • 5. Ali MM, Jagadeesh PSV, Lin II, Hsu JY (2012) A neural network approach to estimate tropical cyclone heat potential in the Indian Ocean. IEEE Geosci Remote Sens Lett 9(6):1114–1117. https://doi.org/10.1109/LGRS.2012.2190491
  • 6. Anandh PC, Vissa NK (2020) On the linkage between extreme rainfall and the madden–julian oscillation over the indian region. Meteorol Appl 27. https://doi.org/10.1002/met.1901
  • 7. Anandh PC, Vissa NK, Broderick C (2018) Role of MJO in modulating rainfall characteristics observed over India in all seasons utilizing TRMM. Int J Climatol 38:2352–2373. https://doi.org/10.1002/joc.5339
  • 8. Balaguru K, Chang P, Saravanan R, Leung LR, Xu ZL, Li M, Hsieh J-S (2012) Ocean barrier layers’ effect on tropical cyclone intensification. Proc Natl Acad Sci 109:14343–14347. https://doi.org/10.1073/pnas.1201364109
  • 9. Balaguru K, Leung LR, Lu J, Foltz GR (2016) A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by ENSO. J Geophys Res Atmos 121:6954–6968. https://doi.org/10.1002/2016JD024936
  • 10. Bender MA, Ginis I, Kurihara Y (1993) Numerical simulations of tropical cyclone–ocean interaction with a high resolution coupled model. J Geophys Res 98:23245–23263. https://doi.org/10.1029/93JD02370
  • 11. Bender MA, Ginis I, Tuleya R, Thomas B, Marchok T (2007) The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Monthly Weather Rev 135(12):3965–3989. https://doi.org/10.1175/2007MWR2032.1
  • 12. Bhardwaj P, Singh O (2020) Climatological characteristics of Bay of Bengal tropical cyclones: 1972–2017. Theor Appl Climatol 139:615–629. https://doi.org/10.1007/s00704-019-02989-4
  • 13. Bhaskaran PK, Rao AD, Murty T (2020) Tropical Cyclone–induced Storm surges and wind waves in the Bay of Bengal. In: Techniques for disaster risk management and mitigation. Wiley, New York, pp 237–294. https://doi.org/10.1002/9781119359203.ch17
  • 14. Bhatia KT, Vecchi GA, Knutson TR, Murakami H, Kossin J, Dixon KW, Whitlock CE (2019) Recent increases in tropical cyclone intensification rates. Nat Commun 10:635. https://doi.org/10.1038/s41467-019-08471-z
  • 15. Bhatla R, Raj R, Mall RK, Shivani (2020) Tropical cyclones over the North Indian Ocean in changing climate. In: Techniques for disaster risk management and mitigation. Wiley, New Yoek, pp 63–76. https://doi.org/10.1002/9781119359203.ch5
  • 16. Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108:1046–1053. https://doi.org/10.1175/1520-0493(1980)108%3c1046:TCOEPT%3e2.0.CO;2
  • 17. Cione JJ (2015) The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon Weather Rev 143(3):904–913. https://doi.org/10.1175/MWR-D-13-00380.1
  • 18. Dare RA, McBride JL (2011) Sea surface temperature response to tropical cyclones. Monthly Weather Rev. https://doi.org/10.1175/MWR-D-10-05019.1
  • 19. de Boyer MC, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Ocean 109. https://doi.org/10.1029/2004JC002378
  • 20. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. https://doi.org/10.1038/nature07234
  • 21. Emanuel KA (1986) An air–sea interaction theory for tropical cyclone. Part I. Steady State Maintenance J Atmospheric Sci 43:585–604. https://doi.org/10.1175/1520-0469(1986)043%3c0585:AASITF%3e2.0.CO;2
  • 22. Frank WM, Roundy PE (2006) The role of tropical waves in tropical cyclogenesis. Mon Weather Rev 134:2397–2417. https://doi.org/10.1175/MWR3204.1
  • 23. Gao S, Zhai S, Li T, Chen Z (2018) On the asymmetric distribution of shear-relative typhoon rainfall. Meteorol Atmos Phys 130:11–22. https://doi.org/10.1007/s00703-016-0499-0
  • 24. George JV, Vinayachandran PN, Vijith V, Thushara V, Nayak AA, Pargaonkar SM, Amol P, Vijaykumar K, Matthews AJ (2019) Mechanisms of barrier layer formation and erosion from in situ observations in the Bay of Bengal. J Phys Oceanogr 49:1183–1200. https://doi.org/10.1175/JPO-D-18-0204.1
  • 25. Goni G, Demaria M, Knaff J, Sampson C, Ginis I, Bringas F, Mavume A, Lauer C, Lin I-I, Ali MM, Sandery P, Ramos-Buarque S, Kang K, Mehra A, Chassignet E, Halliwell G (2009) Applications of satellite-derived Ocean measurements to tropical cyclone intensity forecasting. Oceanogr 22:190–197
  • 26. Gulakaram VS, Vissa NK, Bhaskaran PK (2018) Role of mesoscale eddies on atmospheric convection during summer monsoon season over the Bay of Bengal: a case study. J Ocean Eng Sci 3:343–354. https://doi.org/10.1016/j.joes.2018.11.002
  • 27. Haus BK, Jeong D, Donelan MA, Zhang JA, Savelyev I (2010) Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys Res Lett. https://doi.org/10.1029/2009GL042206
  • 28. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J-N (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803
  • 29. Hlywiak J, Nolan DS (2019) The influence of oceanic barrier layers on tropical cyclone intensity as determined through idealized, coupled numerical simulations. J Phys Oceanogr 49(7):1723–1745. https://doi.org/10.1175/JPO-D-18-0267.1
  • 30. Jangir B, Swain D, Ghose S.K (2020) Influence of eddies and tropical cyclone heat potential on intensity changes of tropical cyclones in the North Indian Ocean. Adv. Sp. Res. https://doi.org/10.1016/j.asr.2020.01.011
  • 31. Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. J Geophys Res Ocean 105:16803–16821. https://doi.org/10.1029/2000JC900072
  • 32. Kattamanchi VK, Viswanadhapalli Y, Dasari HP, Langodan S, Vissa NK, Sanikommu S, Rao SVB (2021) Impact of assimilation of SCATSAT-1 data on coupled ocean-atmospheric simulations of tropical cyclones over Bay of Bengal. Atmos Res 261:105733. https://doi.org/10.1016/j.atmosres.2021.105733
  • 33. Kumar R, Rani S, Maharana P (2021) Assessing the impacts of Amphan cyclone over West Bengal, India: a multi-sensor approach. Environ Monit Assess 193:283. https://doi.org/10.1007/s10661-021-09071-5
  • 34. Li Z, Yu W, Li T, Murty VSN, Tangang F (2013) Bimodal character of cyclone Climatology in the Bay of Bengal modulated by monsoon seasonal cycle*. J Clim 26:1033–1046. https://doi.org/10.1175/JCLI-D-11-00627.1
  • 35. Li Z, Li T, Yu W (2019) Environmental conditions regulating the formation of super tropical cyclone during premonsoon transition period over Bay of Bengal. Clim Dyn 52:3857–3867. https://doi.org/10.1007/s00382-018-4365-2
  • 36. Lin II, Chen CH, Pun IF, Liu WT, Wu CC (2009) Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys Res Lett 36:L03817. https://doi.org/10.1029/2008GL035815
  • 37. Lin I-I, Goni GJ, Knaff JA, Forbes C, Ali MM (2013) Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat Hazards 66:1481–1500. https://doi.org/10.1007/s11069-012-0214-5
  • 38. Lloyd ID, Vecchi GA (2011) Observational evidence for oceanic controls on hurricane intensity. J Clim 24(4):1138–1153. https://doi.org/10.1175/2010JCLI3763.1
  • 39. Locarnini M, Mishonov A.V, Baranova O.K, Boyer TP, Zweng MM, Garcia HE, Seidov D, Weathers K, Paver C, Smolyar I (2018) World Ocean Atlas 2018, Volume 1: Temperature.
  • 40. Mandke SK, Sahai AK (2016) Twin tropical cyclones in the Indian Ocean: the role of equatorial waves. Nat Hazards 84:2211–2224. https://doi.org/10.1007/s11069-016-2546-z
  • 41. Mei W, Pasquero C, Primeau F (2012) The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys Res Lett 39(7). https://doi.org/10.1029/2011GL050765
  • 42. Neetu S, Lengaigne M, Vialard J, Samson G, Masson S, Krishnamohan KS, Suresh I (2019) Premonsoon/Postmonsoon Bay of Bengal Tropical Cyclones Intensity: role of air-sea coupling and large-scale background state. Geophys Res Lett 46:2149–2157. https://doi.org/10.1029/2018GL081132
  • 43. Neetu S, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Durand F (2012) Influence of upper‐ocean stratification on tropical cyclone‐induced surface cooling in the Bay of Bengal. Journal of Geophysical Research: Oceans 117(C12). https://doi.org/10.1029/2012JC008433
  • 44. Nellipudi NR, Yesubabu V, Srinivas CV, Vissa NK, Langodan S (2021) Impact of surface roughness parameterizations on tropical cyclone simulations over the Bay of Bengal using WRF-OML model. Atmos Res 105779. https://doi.org/10.1016/j.atmosres.2021.105779
  • 45. Pasquero C, Desbiolles F, Meroni AN (2021) Air‐sea interactions in the cold wakes of tropical cyclones. Geophys Res Lett 48(2):e2020GL091185. https://doi.org/10.1029/2020GL091185
  • 46. Prakash K.R, Nigam T, Pant V, Chandra N (2021) On the interaction of mesoscale eddies and a tropical cyclone in the Bay of Bengal. Nat Hazards. https://doi.org/10.1007/s11069-021-04524-z
  • 47. Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–175. https://doi.org/10.1175/1520-0485(1981)011%3c0153:UORTAH%3e2.0.CO;2
  • 48. Price J (2009) Metrics of hurricane–ocean interaction. vertically-integrated or vertically-averaged ocean temperature?. Ocean Science J Disc 6:909. https://doi.org/10.5194/os-5-351-2009.
  • 49. Pun I, Lin I, Wu C, Ko D, Liu WT (2007) Validation and application of altimetry-derived Upper Ocean Thermal structure in the Western North Pacific Ocean for Typhoon-Intensity Forecast. IEEE Trans Geosci Remote Sens 45:1616–1630. https://doi.org/10.1109/TGRS.2007.895950
  • 50. Pun I-F, Lin I-I, Lo M-H (2013) Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys Res Lett 40:4680–4684. https://doi.org/10.1002/grl.50548
  • 51. Qiu Y, Han W, Lin X, West BJ, Li Y, Xing W, Guo X (2019) Upper-ocean response to the super tropical cyclone Phailin (2013) over the freshwater region of the Bay of Bengal. J Phys Oceanogr 49(5):1201–1228. https://doi.org/10.1175/JPO-D-18-0228.1
  • 52. Rao RR, Girish Kumar MS, Ravichandran M, Rao AR, Gopalakrishna VV, Thadathil P (2010) Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea Res. Part I Oceanogr Res Pap 57:1–13. https://doi.org/10.1016/j.dsr.2009.10.008
  • 53. Roman-Stork HL, Subrahmanyam B, Trott CB (2019) Mesoscale eddy variability and its linkage to deep convection over the Bay of Bengal using satellite altimetric observations. Adv Sp Res. https://doi.org/10.1016/j.asr.2019.09.054
  • 54. Roman-Stork HL, Subrahmanyam B (2020) The impact of the Madden–Julian Oscillation on Cyclone Amphan (2020) and Southwest Monsoon Onset. Remote Sens 12. https://doi.org/10.3390/rs12183011
  • 55. Rudzin JE, Shay LK, Johns WE (2018) The influence of the barrier layer on SST response during tropical cyclone wind forcing using idealized experiments. J Phys Oceanogr 48:1471–1478. https://doi.org/10.1175/JPO-D-17-0279.1
  • 56. Sahoo B, Bhaskaran PK (2016) Assessment on historical cyclone tracks in the Bay of Bengal, east coast of India. Int J Climatol 36:95–109. https://doi.org/10.1002/joc.4331
  • 57. Sattar AM, Cheung KKW (2019) Comparison between the active tropical cyclone seasons over the Arabian Sea and Bay of Bengal. Int J Climatol 39:5486–5502. https://doi.org/10.1002/joc.6167
  • 58. Shenoi SSC, Shankar D, Shetye SR (2002) Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J Geophys Res Ocean 107:5–14. https://doi.org/10.1029/2000JC000679
  • 59. Singh R, Kishtawal CM, Pal PK, Joshi PC (2011) Assimilation of the multisatellite data into the WRF model for track and intensity simulation of the Indian Ocean tropical cyclones. Meteorol Atmos Phys 111(3–4):103–119. https://doi.org/10.1007/s00703-011-0127-y
  • 60. Sobel AH, Camargo SJ, Hall TM, Lee C-Y, Tippett MK, Wing AA (2016) Human influence on tropical cyclone intensity. Science 353:242–246. https://doi.org/10.1126/science.aaf6574
  • 61. Sreenivas P, Gnanaseelan C, Prasad KVSR (2012) Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal. Glob Planet Change 80–81:215–225. https://doi.org/10.1016/j.gloplacha.2011.11.001
  • 62. Steffen J, Bourassa M (2018) Barrier layer development local to tropical cyclones based on Argo float observations. J Phys Oceanogr 48(9):1951–1968. https://doi.org/10.1175/JPO-D-17-0262.1
  • 63. Thadathil P, Muraleedharan PM, Rao RR, Somayajulu YK, Reddy GV, Revichandran C (2007) Observed seasonal variability of barrier layer in the Bay of Bengal. J Geophys Res Ocean 112. https://doi.org/10.1029/2006JC003651
  • 64. Uddin MJ, Nasrin ZM, Li Y (2021) Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries over the North Indian Ocean. Dyn Atmos Ocean 93:101196. https://doi.org/10.1016/j.dynatmoce.2020.101196
  • 65. Vincent EM, Emanuel KA, Lengaigne M, Vialard J, Madec G (2014) Influence of upper ocean stratification interannual variability on tropical cyclones. Journal of Advances in Modeling Earth Systems 6(3):680–699. https://doi.org/10.1002/2014MS000327
  • 66. Vissa NK, Satyanarayana AN, Prasad Kumar B (2012) Response of Upper Ocean during passage of MALA cyclone utilizing ARGO data. Int J Appl Earth Obs Geoinf 14:149–159. https://doi.org/10.1016/j.jag.2011.08.015
  • 67. Vissa NK, Satyanarayana AN, Prasad Kumar B, (2013a) Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal. Nat Hazards 68:351–371. https://doi.org/10.1007/s11069-013-0625-y
  • 68. Vissa NK, Satyanarayana AN, Prasad Kumar B (2013b) Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Sci J 48:279–288. https://doi.org/10.1007/s12601-013-0026-x
  • 69. Vissa NK, Satyanarayana AN, Prasad Kumar B (2013c) Response of oceanic cyclogenesis metrics for NARGIS cyclone: a case study. Atmos Sci Lett 14:7–13. https://doi.org/10.1002/asl2.407
  • 70. Wada A (2012) Numerical study on the effect of the ocean on tropical-cyclone intensity and structural change. In Atmospheric model applications. Croatia: InTech, pp 43–68. https://doi.org/10.5772/34418
  • 71. Wada A (2015) Verification of tropical cyclone heat potential for tropical cyclone intensity forecasting in the Western North Pacific. J Oceanogr 71:373–387. https://doi.org/10.1007/s10872-015-0298-0
  • 72. Wada A, Chan JCL (2021) Increasing TCHP in the western North Pacific and its influence on the intensity of FAXAI and HAGIBIS in 2019. SOLA Advpub. https://doi.org/10.2151/sola.17A-005
  • 73. Wada A, Usui N (2007) Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the Western North Pacific. J Oceanogr 63:427–447. https://doi.org/10.1007/s10872-007-0039-0
  • 74. Wada A, Kanada S, Yamada H (2018) Effect of air-sea environmental conditions and interfacial processes on extremely intense Typhoon Haiyan (2013). J Geophys Res Atmos 123:10310–379405. https://doi.org/10.1029/2017JD028139
  • 75. Wang X, Han G, Qi Y, Li W (2011) Impact of barrier layer on typhoon induced sea surface cooling. Dyn Atmos Oceans 52:367–385. https://doi.org/10.1016/j.dynatmoce.2011.05.002
  • 76. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932. https://doi.org/10.1175/1520-0493(2004)132%3c1917:AARMMI%3e2.0.CO;2
  • 77. Wong MLM, Chan JCL (2004) Tropical Cyclone intensity in vertical wind shear. J Atmos Sci 61:1859–1876. https://doi.org/10.1175/1520-0469(2004)061%3c1859:TCIIVW%3e2.0.CO;2
  • 78. Wu L, Wang B, Braun SA (2005) Impacts of air–sea interaction on tropical cyclone track and intensity. Monthly Weather Rev 133(11):3299–3314. https://doi.org/10.1175/MWR3030.1
  • 79. Yamada H, Moteki Q, Yoshizaki M (2010) The unusual track and rapid intensification of cyclone Nargis in 2008 under a characteristic environmental flow over the Bay of Bengal. J Meteorol Soc Japan 88:437–453. https://doi.org/10.2151/jmsj.2010-311
  • 80. Yan Y, Li L, Wang C (2017) The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J Geophys Re Oceans 122(6):4829–4844. https://doi.org/10.1002/2017JC012694
  • 81. Yesubabu V, Srinivas CV, Ramakrishna SSVS, Prasad KH (2014) Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal. Nat Hazards 74(3):2109–2128. https://doi.org/10.1007/s11069-014-1293-2
  • 82. Yesubabu V, Kattamanchi VK, Vissa NK, Dasari HP, Sarangam VBR (2020) Impact of ocean mixed-layer depth initialization on the simulation of tropical cyclones over the Bay of Bengal using the WRF-ARW model. Meteorol Appl 27:e1862. https://doi.org/10.1002/met.1862
  • 83. Yu L, McPhaden MJ (2011) Ocean Preconditioning of Cyclone Nargis in the Bay of Bengal: Interaction between Rossby Waves, Surface Fresh Waters, and Sea Surface Temperatures. J Phys Oceanogr 41:1741–1755. https://doi.org/10.1175/2011JPO4437.1
  • 84. Zhang L, Oey L (2019) An observational analysis of ocean surface waves in tropical cyclones in the western North Pacific Ocean. J Geophys Re Oceans 124(1):184–195. https://doi.org/10.1029/2018JC014517
  • 85. Zhang JA, Nolan DS, Rogers RF, Tallapragada V (2015) Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon Weather Rev 143(8):3136–3155. https://doi.org/10.1175/MWR-D-14-00339.1
  • 86. Zhang JA, Black PG, French JR, Drennan WM (2008) First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys Res Lett 35(14). https://doi.org/10.1029/2008GL034374
  • 87. Zheng X, Duan YH, Yu H (2007) Dynamical effects of environmental vertical wind shear on tropical cyclone motion, structure, and intensity. Meteorol Atmos Phys 97:207–220. https://doi.org/10.1007/s00703-006-0253-0
  • 88. Zweng MM, Seidov D, Boyer T, Locarnini M, Garcia H, Mishonov A, Baranova OK, Weathers K, Paver CR, Smolyar I (2019) World Ocean Atlas 2018, Volume 2: Salinity.
Uwagi
Korekta artykułu w Acta Geophysica Vol. 69, no 6. Nr DOI korekty: 10.1007/s11600-021-00693-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2b0c176-9fcf-427a-8c46-6e04ab162177
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.