PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Type-II superlattice detectors for free space optics applications and higher operating temperature conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utmost limit performance of interband cascade detectors optimized for the longwave range ofinfrared radiation is investigated in this work. Currently, materials from the III–V group are character-ized by short carrier lifetimes limited by Shockley-Read-Hall generation and recombination processes.The maximum carrier lifetime values reported at 77 K for the type-II superlattices InAs/GaSb andInAs/InAsSb in a longwave range correspond to ∼200 and ∼400 ns. We estimated theoretical detectivityof interband cascade detectors assuming above carrier lifetimes and a value of ∼1–50μs reported for awell-known HgCdTe material. It has been shown that for room temperature the limit value of detctivityis of ∼3–4×10¹⁰cmHz½/W for the optimized detector operating at the wavelength range ∼10μm couldbe reached.
Słowa kluczowe
EN
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2 Gen. Witolda Urbanowicza St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Gen. Witolda Urbanowicza St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Gen. Witolda Urbanowicza St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Gen. Witolda Urbanowicza St., 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, 2 Gen. Witolda Urbanowicza St., 00-908 Warsaw, Poland
Bibliografia
  • [1] A. Rogalski, Infrared Detectors, CRC Press, Boca Raton, 2011.
  • [2] G.A. Sai-Halasz, L. Esaki, W.A. Harrison, InAs-GaSb superlattice energystructure and its semiconductor-semimetal transition, Phys. Rev. B 18 (6) (1978) 2812.
  • [3] E.A. Plis, InAs/GaSb type-II superlattice detectors, Adv. Electron. 2014 (2014), 246769.
  • [4] M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, R. McClintock, Antimonide-based type II superlattices: a superior candidate for the third generation of infrared imaging systems, J. Electron. Mater. 43 (8) (2014), 28022807.
  • [5] T. Ashley, C.T. Elliott, Non-equilibrium mode of operation for infrared detection, Electron. Lett. 21 (1985) 451–452.
  • [6] S. Maimon, G. Wicks, nBn detector, an infrared detector with reduced dark current and higher operating temperature, Appl. Phys. Lett. 89 (2006), 151109.
  • [7] D.Z. Ting, C.J. Hill, A. Soibel, J. Nguyen, S. Keo, M.C. Lee, J.M. Mumolo, J.K. Liu, S.D. Gunapala, Antimonide-based barrier infrared detectors, Proc. SPIE 7660 (2010), 76601R.
  • [8] R.T. Hinkey, R.Q. Yang, Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors, J. Appl. Phys. 114 (10) (2013), 104506.
  • [9] J. Mikołajczyk, An overview of free space optics with quantum cascade lasers, IJET 60 (3) (2014) 259–264.
  • [10] J. Mikołajczyk, Z. Bielecki, M. Bugajski, J. Piotrowski, J. Wojtas, W. Gawron, D. Szabra, A. Prokopiuk, Analysis of free-space optics development, Metrol. Meas. Syst. 24 (4) (2017) 653–674.
  • [11] P.C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, E. Weiss, Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors, J. Electron. Mater. 43 (8) (2014) 2984–2990.
  • [12] A. Ferron, J. Rothman, O. Gravrand, Modeling of dark current in HgCdTe infrared detectors, J. Electron. Mater. 42 (11) (2013) 3303–3308.
  • [13] M.A. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, H.D. Shih, Minority carrier lifetime in p-HgCdTe, J. Electron. Mater. 34 (2005) 880–884.
  • [14] E.R. Youngdale, J.R. Meyer, C.A. Hoffman, F.J. Bartoli, C.H. Grein, P.M. Young, H. Ehrenreich, R.H. Miles, D.H. Chow, Auger lifetime enhancement in InAs-Ga1–xInxSb superlattices, Appl. Phys. Lett. 64 (1994) 3160–3162.
  • [15] B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence, Appl. Phys. Lett. 97 (2010), 251117.
  • [16] J. Pellegrino, R. DeWames, Minority carrier lifetime characteristics in type II InAs/GaSb LWIR superlattice n+ _p+photodiodes, Proc. SPIE 7298 (2009), 72981U.
  • [17] D. Donetsky, G. Belenky, S. Svensson, S. Suchalkin, Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials, Appl. Phys. Lett. 97 (2010), 052108.
  • [18] D. Wang, D. Donetsky, S. Jung, G. Belenky, Carrier lifetime measurements in long-wave infrared InAs/GaSb superlattices under low excitation conditions, J. Electron. Mater. 41 (11) (2012) 3027–3030.
  • [19] D. Zuo, P. Qiao, D. Wasserman, S.L. Chuang, Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control, Appl. Phys. Lett. 102 (2013), 141107.
  • [20] A. Rogalski, M. Kopytko, P. Martyniuk, InAs/GaSb type-II superlattice infrared detectors: three decades of development, Proc. SPIE 10177 (2017), 1017715.
  • [21] Y. Lin, D. Wang, D. Donetsky, G. Belenky, H. Hier, W.L. Sarney, S.P. Svensson, Minority carrier lifetime in beryllium-doped InAs/InAsSb strained layer superlattices, J. Electron. Mater. 43 (9) (2014) 3184–3190.
  • [22] E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, Y.-H. Zhang, Significantly improved minority carrier lifetime observed in a long-wavelength infrared III–V type-II superlattice comprised of InAs/InAsSb, Appl. Phys. Lett. 99 (25) (2011), 251110.
  • [23] Z. Tian, R.T. Hinkey, R.Q. Yang, D. Lubyshev, Y. Qiu, J.M. Fastenau, W.K. Liu, M.B. Johnson, Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers, J. Appl. Phys. 111 (2012), 024510.
  • [24] J.V. Li, R.Q. Yang, C.J. Hill, S.L. Chuang, Interband cascade detectors with room temperature photovoltaic operation, Appl. Phys. Lett. 86 (2005), 101102.
  • [25] R.Q. Yang, Z. Tian, Z. Cai, J.F. Klem, M.B. Johnson, H.C. Liu, Interband-cascade infrared photodetectors with superlattice absorbers, J. Appl. Phys. 107 (2010), 054514.
  • [26] N. Gautam, S. Myers, A.V. Barve, B. Klein, E.P. Smith, D.R. Rhiger, L.R. Dawson, S. Krishna, High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice, Appl. Phys. Lett. 101 (2012), 021106.
  • [27] L. Lei, L. Li, H. Ye, H. Lotfi, R.Q. Yang, M.B. Johnson, J.A. Massengale, T.D. Mishima, M.B. Santos, Long wavelength interband cascade infrared photodetectors operating at high temperatures, J. Appl. Phys. 120 (2016), 193102.
  • [28] D. Hofstetter, F.R. Giorgetta, E. Baumann, Q. Yang, C. Manz, K. Köhler, Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry, Appl. Phys. B 100 (2010) 313–320.
Uwagi
1. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2ae53d2-ddda-4995-abc7-d77f35cc6000
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.