PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study boundary controllability for the linear extension problem of a wave equation with space-dependent coefficients and having an internal degeneracy. For this purpose, we mainly focus on the well-posedness and the boundary null controllability of a relaxed version of the original problem, namely, to some degenerate transmission problem. The key ingredient is to derive direct and inverse inequalities for the associated homogeneous degenerate adjoint problem. By these inequalities, we deduce that the transmission problem has a unique solution by transposition and this solution is null controllable. Moreover, we give an explicit formula of the controllability time.
Wydawca
Rocznik
Strony
325--343
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • FST Errachidia, MAIS Laboratory, Moulay Ismail University of Meknes, MAMCS Group, 52000 Errachidia, Morocco
autor
  • FST Errachidia, MAIS Laboratory, Moulay Ismail University of Meknes, MAMCS Group, 52000 Errachidia, Morocco
  • FST Errachidia, MAIS Laboratory, Moulay Ismail University of Meknes, MAMCS Group, 52000 Errachidia, Morocco
Bibliografia
  • [1] F. Alabau-Boussouira, P. Cannarsa and G. Leugering, Control and stabilization of degenerate wave equations, SIAM J. Control Optim. 55 (2017), no. 3, 2052-2087.
  • [2] B. Allal, A. Moumni and J. Salhi, Boundary controllability for a degenerate and singular wave equation, Math. Methods Appl. Sci. 45 (2022), no. 17, 11526-11544.
  • [3] J. Bai and S. Chai, Exact controllability for some degenerate wave equations, Math. Methods Appl. Sci. 43 (2020), no. 12, 7292-7302.
  • [4] J. Bai and S. Chai, Exact controllability for a one-dimensional degenerate wave equation in domains with moving boundary, Appl. Math. Lett. 119 (2021), Paper No. 107235.
  • [5] J. Bai and S. Chai, Exact controllability of wave equations with interior degeneracy and one-sided boundary control, J. Syst. Sci. Complex. 36 (2023), no. 2, 656-671.
  • [6] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), no. 5, 1024-1065.
  • [7] I. Boutaayamou, G. Fragnelli and D. Mugnai, Boundary controllability for a degenerate wave equation in nondivergence form with drift, SIAM J. Control Optim. 61 (2023), no. 4, 1934-1954.
  • [8] N. Burq, Contrôlabilité exacte des ondes dans des ouverts peu réguliers, Asymptot. Anal. 14 (1997), no. 2, 157-191.
  • [9] N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997),no. 7, 749-752.
  • [10] P. Cannarsa, R. Ferretti and P. Martinez, Null controllability for parabolic operators with interior degeneracy and one-sided control, SIAM J. Control Optim. 57 (2019), no. 2, 900-924.
  • [11] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Ser. Math. Appl. 13, Clarendon Press, New York, 1998.
  • [12] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl. (9) 58 (1979), no. 3, 249-273.
  • [13] L. V. Fardigola, Transformation operators in control problems for a degenerate wave equation with variable coefficients, Ukrainian Math. J 70 (2019), 1300-1318.
  • [14] X. Fu and Z. Liao, Observability estimate for the wave equation with variable coefficients, SIAM J. Control Optim. 60 (2022), no. 4, 2344-2372.
  • [15] X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control Optim. 46 (2007), no. 5, 1578-1614.
  • [16] H. Gajewski, K. Gröger and K. Zacharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, Moscow, 1978.
  • [17] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim. 52 (2014), no. 4, 2037-2054.
  • [18] L. F. Ho, Observabilité frontière de l’équation des ondes, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 12, 443-446.
  • [19] L. F. Ho, Exact controllability of the one-dimensional wave equation with locally distributed control, SIAM J. Control Optim. 28 (1990), no. 3, 733-748.
  • [20] P. I. Kogut, O. P. Kupenko and G. Leugering, On boundary exact controllability of one-dimensional wave equations with weak and strong interior degeneration, Math. Methods Appl. Sci. 45 (2022), no. 2, 770-792.
  • [21] V. Komornik, Exact Controllability and Stabilization, RAM Res. Appl. Math., Masson, Paris, 1994.
  • [22] J. Lagnese, Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim. 21 (1983), no. 1, 68-85.
  • [23] I. Lasiecka, R. Triggiani and P. F. Yao, Exact controllability for second-order hyperbolic equations with variable coefficient-principal part and first-order terms, Nonlinear Anal. 30 (1997), 111-122.
  • [24] I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl. 235 (1999), no. 1, 13-57.
  • [25] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Masson, Paris, 1988.
  • [26] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev. 30 (1988), no. 1, 1-68.
  • [27] Y. Liu, Some sufficient conditions for the controllability of wave equations with variable coefficients, Acta Appl. Math. 128 (2013), 181-191.
  • [28] Y.-X. Liu, Exact controllability of the wave equation with time-dependent and variable coefficients, Nonlinear Anal. Real World Appl. 45 (2019), 226-238.
  • [29] L. Lu, S. Li, G. Chen and P. Yao, Control and stabilization for the wave equation with variable coefficients in domains with moving boundary, Systems Control Lett. 80 (2015), 30-41.
  • [30] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698.
  • [31] S. Micu and E. Zuazua, An Introduction to the Controllability of Partial Differential Equations, Hermann, Paris, 2004.
  • [32] A. Moumni and J. Salhi, Exact controllability for a degenerate and singular wave equation with moving boundary, Numer. Algebra Control Optim. 13 (2023), no. 2, 194-209.
  • [33] J.-P. Puel, Global Carleman inequalities for the wave equations and applications to controllability and inverse problems, Report, Universit´e de Versailles Saint-Quentin, Versailles, 2011.
  • [34] D. L. Russell, Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory, J. Math. Anal. Appl. 40 (1972), 336-368.
  • [35] F. Wang, J.-M. Wang and X.-H. Wu, Exact controllability of the interconnected Schrödinger and wave equations with a boundary control at the wave equation, J. Math. Anal. Appl. 519 (2023), no. 2, Article ID 126831.
  • [36] P.-F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim. 37 (1999), no. 5, 1568-1599.
  • [37] X. Zhang, Explicit observability estimate for the wave equation with potential and its application, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), no. 1997, 1101-1115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2ad6436-c41c-42fe-914f-e433de89cabd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.