Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we focus on generalizations of the classical rough set approach to fuzzy environments. There are two aspects of rough set approaches: classification and approximation. In the classification aspect, by rough set approaches we can classify objects into positive and negative examples of a class. On the other hand, in the approximation aspect, by rough set approaches we obtain the lower and upper approximations of a class. The former model works better in the attribute reduction while the latter model works better in the rule induction. In the setting of the classical rough set approach, the lower approximation is nothing but the set of positive examples and the upper approximation is the complementary set of negative examples. However, these equalities do not always hold in the generalized settings. Most of fuzzy rough set models proposed earlier are defined in the classification aspect. The approaches based on those models do not always work well in approximating fuzzy subsets. In this paper we define the fuzzy rough set models in the approximation aspect. We investigate their fundamental properties and demonstrate the advantages of fuzzy set approximation. Finally we consider attribute reduction based on the proposed fuzzy rough set models.
Wydawca
Czasopismo
Rocznik
Tom
Strony
21--51
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Graduate School of Engineering Science Osaka University Machikaneyama 1-3, Toyonaka, 560-8531, Japan
Bibliografia
- [1] Pawlak, Z.: Rough sets, International Journal of Computer and Information Science, 11, 1982, 341–356.
- [2] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, 1991.
- [3] Nakamura, A.: Fuzzy rough sets, Notes on Multiple-Valued Logic in Japan 9, 1988, 1–8.
- [4] Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets, Int. J. General Syst. 17, 1990, 191–209.
- [5] Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together, in: Intelligent Decision Support (R. Słowiński, Ed.), Kluwer Academic Publishers, Dordrecht, 1992, 203–232.
- [6] Morsi, N.N., Yakout, M.M., Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems 100, 1998. 327–342.
- [7] Greco, S., Matarazzo, B., Słowi´nski, R.: The use of rough sets and fuzzy sets in MCDM, in: Multicriteria Decision Making (T. Gal, T. J. Stewart, T. Hanne, Eds.), Kluwer Academic Publishers, Boston, MA, 1999, 397–455.
- [8] Boixader, D., Jacas, J., Recasens, J.: Upper and lower approximations of fuzzy sets, International Journal of General Systems, 29, 2000, 555–568.
- [9] Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough set, Fuzzy Sets and Systems 126, 2002, 137–155.
- [10] Inuiguchi,M., Tanino, T.: New fuzzy rough sets based on certainty qualification, in: Rough-Neural Computing (S.K. Pal, L. Polkowski, Eds.) Springer-Verlag, Berlin-Heidelberg, 2003, 278–296.
- [11] Wu,W.-Z.,Mi, J.-S., Zhang,W.-X.: Generalized fuzzy rough sets, Information Sciences 151, 2003, 263–282.
- [12] Greco, S., Inuiguchi, M., Słowi´nski, R.: Rough sets and gradual decision rules, in: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing: 9th International Conference, Proceedings (G. Wang, Q. Liu, Y. Yao, Eds.) LNAI 2639, Springer-Verlag, Berlin-Heidelberg, 2003, 156–164.
- [13] Inuiguchi, M.: Generalization of rough sets: From crisp to fuzzy cases, in: Rough Sets and Current Trends in Computing: 4th International Conference, Proceedings (S. Tsumoto, R. Słowi´nski, J. Komorowski, J.W. Grzymala-Busse, Eds.) LNAI 3066, Springer-Verlag, Berlin-Heidelberg, 2004. 26–37.
- [14] Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices, Transactions on Rough Sets II, LNCS 3135, 2004, 278–296.
- [15] Wu, W.-Z., Zhang, W.-X.: Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences 159, 2004, 233–254.
- [16] J.-S. Mi, W.-X. Zhang, An axiomatic characterization of a fuzzy generalization of rough sets, Information Sciences 160, 2004, 235–249.
- [17] W. Wu, J. Mi, W. Zhang, Generalized fuzzy rough sets, Information Sciences 151 (2003) 263–282.
- [18] Wu, W.-Z., Leung, Y., Mi, J.-S.: On characterizations of (I, T)-fuzzy rough approximation operators, Fuzzy Sets and Systems 15, 2005, 76–102.
- [19] Yeung, D.S., Chen, D.G., Tsang, E.C.C., Lee, J.W.T., Wang, X.Z.,: On the generalization of fuzzy rough sets, IEEE Transactions on Fuzzy Systems 13, 2005, 343–361.
- [20] Greco, S., Inuiguchi, M., Słowi´nski, R.: Fuzzy rough sets and multiple-premise gradual decision rules, Int. J. Approximate Reasoning 41, 2006, 179–211.
- [21] DeCock, M., Cornelis, C., Kerre, E.E.: Fuzzy rough sets: The forgotten step, IEEE Transactions on Fuzzy Systems 15, 2007, 121–130.
- [22] Li, T.J., Zhang, W.X.: Rough fuzzy approximations on two universes of discourse, Information Sciences, 178, 2008, 892–906.
- [23] Mi, J.-S., Leung, Y., Zhao, H.-Y., Feng, T.: Generalized fuzzy rough sets determined by a triangular norm, Information Sciences, 178, 2008, 3203–3213.
- [24] Wu, W.-Z., Leung, Y., Mi, J.-S.: On generalized fuzzy belief functions in infinite spaces, IEEE Transactions on Fuzzy Systems, 17, 2009, 385–397.
- [25] Liu, X.D., Pedrycz, W., Chai, T.Y., Song, M.L.: The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets, IEEE Transactions on Knowledge and Data Engineering, 21, 2009, 443–462.
- [26] Wu,W.-Z.: On some mathematical structures of T -fuzzy rough set algebras in infinite universes of discourse, Fundamenta Informaticae, 108, 2011, 337–369.
- [27] Inuiguchi, M.: Generalization of rough sets and rule extraction, Transaction on Rough Sets, I, LNCS 3100, 2004, 96–119.
- [28] Inuiguchi, M., Tanino, T.: Fuzzy rough sets based on certainty qualifications, in: Proceedings of the Forth Asian Fuzzy Systems Symposium, 1, 2000, 433–438.
- [29] Inuiguchi,M., Tanino, T.: A new class of necessity measures and fuzzy rough sets based on certainty qualifications, in: Rough Sets and Current Trends in Computing, Second International Conference, Revised Papers (W. Ziarko, Y. Yao, Eds.) LNAI 2005, Springer-Verlag, Berlin-Heidelberg, 2001, 261–268.
- [30] Inuiguchi, M., Tanino, T.: Necessity measures and fuzzy rough sets defined by certainty qualificationsCProceedings of Jint 9th IFSA World Congress and 20th NAFIPS International Conference, 2001, 2724–2729.
- [31] Inuiguchi, M.: Classification- versus approximation-oriented fuzzy rough sets, in: Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems, 2004, CD-ROM.
- [32] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
- [33] Inuiguchi, M., Sakawa, M.: On the closure of generation processes of implication functions from a conjunction function, in: Methodologies for the Conception, Design, and Application of Intelligent Systems (T. Yamakawa, G. Matsumoto, Eds.), 1, World Scientific, Singapore, 1996, 327–330.
- [34] Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988.
- [35] Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, part 1: Inference with possibility distributions, Fuzzy Sets and Systems, 40, 1991, 143–202.
- [36] Inuiguchi, M., Tanino, T.: Function approximation by fuzzy rough sets, in: Intelligent Systems for Information Processing: From Representation to Applications (B. Bouchon-Meunier, L. Foulloy, R.R. Yager, Eds.), Elsevier, Amsterdam, The Netherlands, 2003, 93–104.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f2ac8aec-79c4-4ce6-b0a2-fa5add92ee43